トップQs
タイムライン
チャット
視点
二角形
2つの辺と頂点を持つ多角形 ウィキペディアから
Remove ads
幾何学における二角形(にかくけい、にかっけい、英: digon)とは、2つの頂点とその間を結ぶ2つの辺とからなる多角形のことである。2点間を結ぶ辺が一意に定まるユークリッド幾何のような体系における二角形の実現を考えることは困難であるが、曲面上の幾何などいくつかの体系においては二角形を実現することができる。また、一般的な多面体の枠組みにおける退化した面を表しているとも考えられる。
![]() | この記事は英語版の対応するページを翻訳することにより充実させることができます。(2023年7月) 翻訳前に重要な指示を読むには右にある[表示]をクリックしてください。
|

Remove ads
球面上の二角形
→詳細は「en:spherical lune」および「球面三角法」を参照
球面幾何学において、二角形は2つの頂点と2つの辺からなる球面多角形のことである。球面上の図形であることを強調して球面二角形(きゅうめん - 、英: spherical digon)ともいう[1]。月形(つきがた、英: lune)[2][3]、球面月形(きゅうめんつきがた、英: spherical lune)[4]ともいう。
- 月形の2つの頂点は、必ず互いの対蹠点となっている。したがって、辺の長さはいずれも大円の半周長に等しい。
- 月形の2つの内角は互いに等しい。
- 球面上の異なる2つの大円は、球面を4つの月形に分ける。このとき、隣り合わない2つの月形は合同である。
- 月形が球面上の領域として凸(通常の凸集合とは若干意味が異なる。測地的凸のこと。)であることは、内角が π 以下であることと同値である。凸な月形は、2つの半球面の共通部分として表せる。
- 単位球面上の月形について、その内角が θ ラジアンであるとき、月形の面積は 2θ である。これを2つの内角の和と考えると、球面 n 角形の面積と球面過剰の関係を n≧2 で統一的に解釈できる。
球面二角形は球面幾何学における基本的な図形である。球面三角形の面積を球面過剰で表すジラールの公式(ジラールの定理)は、いくつかの球面二角形の面積を足し引きすることによって導出できる[5]。
Remove ads
脚注
参考文献
関連項目
外部リンク
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads