定義
ある任意の曲線において、線上の点 P0 を基点とし、そこから曲線上の任意点 P(位置ベクトル rP で表されるとする)までの距離を s とする。(この場合の s は一般座標上の距離か曲線上の長さのいずれでもよい。)
このとき点 P の位置は、

のように、変数 s の関数として表すことができる。(以下、特に断らない限り rP = r とする。)
このとき、点 P で接する方向の単位ベクトル(これを tP とする)は、

となる。(位置ベクトルの変位分 Δr が十分小さいとき、|Δr| = Δs であるから、これは単位ベクトルである。)
同様に、
と表される点 Q を考えるとき、点 Q 上の単位接線ベクトル tQ は、

であり、二つの単位接線ベクトル tP 、tQ のなす角度を Δθ とすると、

である。
Δθが十分小さい、すなわち Δs が十分小さいとき、

と見做せる。
従って、接線傾斜 Δθ の変動率である χ を以下のように定義できる。

一般に χ を曲率、χ の逆数 R を曲率半径と言う。
また、特に曲線が高次のとき、Δs → 0 の極限で二つの接線によって決まる平面を、点 P における接触平面と言う。
性質
更に、t を s で微分すると、

が得られる。ここで n が主法線方向の単位ベクトルであり、主法線と接線は直交している。これは d r/ds が単位ベクトルのため、

となり、これを s について微分すると、

となるためである(ベクトル同士の内積がゼロとなるので、当該ベクトル同士は直交している)。
ベクトル t と n の外積、

で得られるベクトル b が陪法線方向の単位ベクトルとなる。陪法線は接触平面に対する法線となっている。