トップQs
タイムライン
チャット
視点

植田大樹

医師 ウィキペディアから

Remove ads

植田 大樹(うえだ だいじゅ、大阪)は、大阪公立大学大学院医学研究科で放射線診断学を専攻する医師であり、人工知能学の准教授を務める。[1][2]

概要 うえだ だいじゅ 植田 大樹, 生誕 ...

2016年から2021年まで大阪市立大学大学院医学研究科放射線診断学・IVR学に医員として勤務。[3]同学にて2017年から2021年にかけて博士課程を終了。[3]在学中の2018年にはマンモグラフィからの乳がんの画像診断AI開発や、[4][5]MRAからの脳動脈瘤の検出AIの開発を行った。[6][7][8]その後、2021年から大阪市立大学健康科学イノベーションセンター特任准教授に着任。2023年に胸部レントゲン写真から心機能や弁膜症を診断するAIを開発した。[9][10][11][12][13][14][15]2024年4月から大阪公立大学大学院医学研究科人工知能学准教授と大阪公立大学健康科学イノベーションセンター副所長を務める。[3]

Remove ads

略歴

  • 2024年4月 - 現在 大阪公立大学大学院医学研究科人工知能学 准教授
  • 2024年4月 - 現在 大阪公立大学健康科学イノベーションセンター 副所長
  • 2022年4月 - 2024年3月 大阪公立大学健康科学イノベーションセンター 特任准教授
  • 2021年4月 - 2022年3月 大阪市立大学健康科学イノベーションセンター 特任准教授
  • 2016年4月 - 2021年3月 大阪市立大学大学院医学研究科 放射線診断学・IVR学 医員

研究分野

  • 放射線科学
  • 画像診断
  • 人工知能
  • コンピューター支援診断

主な受賞

  • 医用画像人工知能研究奨励賞, 日本医学放射線学会, 2023年[16]
  • 南部陽一郎記念若手奨励賞, 大阪公立大学 , 2022年[17]
  • 優秀論文賞, 日本IVR学会, 2022年[18]
  • Japanese Journal of Radiology 優秀論文賞, 日本医学放射線学会, 2022年[19]
  • 優秀論文賞, 日本医学放射線学会, 2020年[20]

主な論文

  • Chest radiography as a biomarker of ageing: artificial intelligence-based, multi-institutional model development and validation in Japan. The Lancet Healthy Longevity. 4(9):e478-e486. 2023.[21]
  • Fairness of artificial intelligence in healthcare: review and recommendations. Japanese journal of radiology. 42(1):3-15. 2023.[22]
  • AI-based Virtual Synthesis of Methionine PET from Contrast-enhanced MRI: Development and External Validation Study. Radiology. 308(2):e223016. 2023.[23]
  • Artificial intelligence-based model to classify cardiac functions from chest radiographs: a multi-institutional, retrospective model development and validation study. The Lancet Digital Health. 5(8):e525-e533. 2023.[15]
  • ChatGPT’s Diagnostic Performance from Patient History and Imaging Findings on the Diagnosis Please Quizzes. Radiology. 308(1):e231040. 2023.[24]
  • Deep learning for pneumothorax diagnosis: a systematic review and meta-analysis. European respiratory review: an official journal of the European Respiratory Society. 32(168):220259. 2023.[25]
  • Evaluating GPT-4-based ChatGPT’s clinical potential on the NEJM quiz. 2(4). 2023.[26]
  • Deep Learning-Based Time-to-Death Prediction Model for COVID-19 Patients Using Clinical Data and Chest Radiographs. Journal of digital imaging. 36(1):178–188. 2023.[27]
  • Nervus: A Comprehensive Deep Learning Classification, Regression, and Prognostication Tool for both Medical Image and Clinical Data Analysis. arXiv [eess.IV]. DOI: 10.48550/ARXIV.2212.11113. 2022.[28]
  • Artificial intelligence-based model for COVID-19 prognosis incorporating chest radiographs and clinical data; a retrospective model development and validation study. The British journal of radiology. 95(1140):20220058. 2022.[29]
  • Deep learning-based algorithm for lung cancer detection on chest radiographs using the segmentation method. Scientific reports. 12(1):727. 2022.[30]
  • Visual and quantitative evaluation of microcalcifications in mammograms with deep learning-based super-resolution. European journal of radiology. 154:110433. 2022.[31]
  • Artificial intelligence-based detection of atrial fibrillation from chest radiographs. European radiology. 32(9):5890–5897. 2022.[32]
  • Maskless 2-Dimensional Digital Subtraction Angiography Generation Model for Abdominal Vasculature using Deep Learning. Journal of vascular and interventional radiology: JVIR. 33(7):845–851. 2022.[33]
  • Deep learning-based detection of parathyroid adenoma by 99mTc-MIBI scintigraphy in patients with primary hyperparathyroidism. Annals of nuclear medicine. 36(5):468–478. 2022.[34]
  • Development and validation of a deep learning model for detection of breast cancers in mammography from multi-institutional datasets. PloS one. 17(3):e0265751. 2022.[5]
  • Development and Validation of Artificial Intelligence–based Method for Diagnosis of Mitral Regurgitation from Chest Radiographs. Radiology: Artificial Intelligence. 4(2):e210221. 2022.[35]
  • Artificial intelligence-based detection of aortic stenosis from chest radiographs. European heart journal. Digital health. 3(1):20–28. 2022.[36]
  • Training, Validation, and Test of Deep Learning Models for Classification of Receptor Expressions in Breast Cancers From Mammograms. JCO precision oncology. 5:543–551. 2021.[37]
  • Artificial intelligence-supported lung cancer detection by multi-institutional readers with multi-vendor chest radiographs: a retrospective clinical validation study. BMC cancer. 21(1):1120. 2021.[38]
  • Deep Learning-based Angiogram Generation Model for Cerebral Angiography without Misregistration Artifacts. Radiology. 299(3):675–681. 2021.[39]
  • Visualizing “featureless” regions on mammograms classified as invasive ductal carcinomas by a deep learning algorithm: the promise of AI support in radiology. Japanese journal of radiology. 39(4):333–340. 2021.[40]
  • Deep Learning for MR Angiography: Automated Detection of Cerebral Aneurysms. Radiology. 290(1):187–194. 2019.[8]
  • Technical and clinical overview of deep learning in radiology. Japanese journal of radiology. 37(1):15–33. 2019.[41]
Remove ads

学会活動

脚注

外部リンク

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads