トップQs
タイムライン
チャット
視点

三十七角形

37の辺と頂点を持つ多角形 ウィキペディアから

三十七角形
Remove ads

三十七角形(さんじゅうしちかくけい、さんじゅうななかっけい、triacontaheptagon)は、多角形の一つで、37本のと37個の頂点を持つ図形である。内角の和は6300°、対角線の本数は629本である。

Thumb
正三十七角形

正三十七角形

要約
視点

正三十七角形においては、中心角と外角は9.729…°で、内角は170.27…°となる。一辺の長さが a の正三十七角形の面積 S は

を平方根と立方根で表すことが可能であるが、三次方程式三次方程式(2つ)→二次方程式と解く必要がある。

以下には、中間結果(三次方程式を1回解いた際の関係式)を示す。

各式を3つの組に分ける。

和積公式で変形する。また、 の関係を使って変形する。

解と係数の関係を使って二次方程式を解くと

ここで、は以下の三次方程式の解である。

三角関数、逆三角関数を用いた解は

平方根、立方根で表すと

別解

二次方程式三次方程式三次方程式の順で求めることもできる。 まず、以下のようにx1~x6を定める。

α、βを以下のように置き

α、βの和と差の平方を求めると

となる。よって、

さらに以下の値A,B,C,Dも三角関数の積和の公式から求まる。

両辺の立方根を取ると

以上より、x1~x6が求まる。

さらに以下のy11,y12の値をx1~x6を使って求める。

両辺の立方根を取ると

以上より

正三十七角形の作図

正三十七角形は定規コンパスによる作図が不可能な図形である。

正三十七角形は折紙により作図可能である[1]

Remove ads

脚注

関連項目

外部リンク

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads