トップQs
タイムライン
チャット
視点
積分方程式
未知関数が積分の中に現れるような方程式 ウィキペディアから
Remove ads
Remove ads
積分方程式(せきぶんほうていしき、Integral equation)は、数学において、未知の関数が積分の中に現れるような方程式である[1][2][3][4][5][6]。積分方程式と微分方程式には密接な関係があり、そのどちらでも問題を定式化することができる場合もある[1][2]。
積分方程式は次の3種類の分類方法がある[1][2][3]。この分類によれば、8種類の積分方程式が存在する。
- 積分の上限および下限が固定の場合、フレドホルム積分方程式と呼ばれる。また、積分の上限・下限の片方が変数の場合、ヴォルテラ積分方程式と呼ばれる[7][8]。
- 未知の関数が積分の中にのみ現れる場合、第一種積分方程式と呼ばれ[3]、未知の関数が積分の中にも外にも現れる場合、第二種積分方程式と呼ばれる[3]。
- 既知の関数 f (下記参照)が恒等的に 0 の場合、同次積分方程式と呼ばれ、f が 0 でない場合、非同次積分方程式と呼ばれる。
4種類の積分方程式(同次・非同次方程式をまとめた)の例として以下のように書ける。 ただし は未知の関数、f は既知の関数、K は既知の2変数関数で積分核と呼ばれる。λ は未知の係数で、線型代数学における固有値と同じ役割をする。
- 第一種フレドホルム積分方程式:
- 第二種フレドホルム積分方程式:
- 第一種ヴォルテラ積分方程式:
- 第二種ヴォルテラ積分方程式:
積分方程式は多くの応用において重要である[1][2][3][4][5][6]。積分方程式に出会う問題としては、弦や膜、棒における放射エネルギー変換や振動などが挙げられる。振動問題は微分方程式によって解かれることもある。
Remove ads
固有値問題の一般化としての積分方程式
要約
視点
ある種の斉次線型積分方程式は、固有値問題の連続極限とみなすことができる。固有値問題は、 を行列、 を固有ベクトル、 を対応する固有値として、
と書くことができる。
添字 、 を連続変数 、 で置き換えて連続極限を取ると、 に関する総和は に関する積分、行列 とベクトル はそれぞれ積分核 と固有関数 に置き換えられて、線型斉次第二種フレドホルム積分方程式
が得られる。
一般に、 は超関数であってもよい。超関数 が でのみ台 (support) を持つ場合は、微分方程式の固有値問題に帰着される。
Remove ads
出典
参考文献
関連項目
外部リンク
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads