トップQs
タイムライン
チャット
視点
量子モンテカルロ法
ウィキペディアから
Remove ads
量子モンテカルロ法(りょうしモンテカルロほう、英: Quantum Monte Carlo method)は、量子多体問題において様々な形式で表れる多次元積分をモンテカルロ法によって扱う手法である。
![]() | この項目「量子モンテカルロ法」は途中まで翻訳されたものです。(原文:英語版 "Quantum_Monte_Carlo") 翻訳作業に協力して下さる方を求めています。ノートページや履歴、翻訳のガイドラインも参照してください。要約欄への翻訳情報の記入をお忘れなく。(2017年7月) |
![]() | この記事は英語版の対応するページを翻訳することにより充実させることができます。(2024年6月) 翻訳前に重要な指示を読むには右にある[表示]をクリックしてください。
|
量子多体問題について信頼できる解(あるいは正確な近似)を得ることは大きな目的のひとつである。 量子モンテカルロ法には様々な種類があり、複雑な量子系についての多くの計算手法を網羅している。 量子モンテカルロ法によって波動関数に含まれる複雑な多体効果を直接的に取り扱うことが可能になり、多くの場合に平均場近似を超えて多体問題の厳密解を得ることができる[1]:187-189。
特にフラストレーション以外のボゾン系の静的物性について数値的厳密解を求める多項式時間のアルゴリズムが存在する。 フェルミオンについては静的物性を計算する優れた近似法や、指数時間の数値的厳密解を求める方法が存在するが、両方を同時に満たす手法は存在しない[要出典]。
Remove ads
出典
参考文献
関連項目
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads