სინუსი და კოსინუსი
კუთხის ტრიგონომეტრიული ფუნქციები From Wikipedia, the free encyclopedia
Remove ads
მათემატიკაში სინუსი და კოსინუსი არის კუთხის ტრიგონომეტრიული ფუნქციები. სამკუთხედის მახვილი კუთხის სინუსი და კოსინუსი განისაზღვრება მართკუთხა სამკუთხედის კონტექსტში. მოცემული კუთხის სინუსი არის ამ კუთხის მოპირდაპირე კათეტის შეფარდება ჰიპოტენუზასთან, ხოლო კოსინუსი — მიმდებარე კათეტის შეფარდება ჰიპოტენუზასთან. კუთხე -სთვის, სინუსი და კოსინუსი აღინიშნება როგორც და .
ამ სტატიაში არ არის მითითებული სანდო და გადამოწმებადი წყარო. |
Remove ads
აღნიშვნა

სინუსი და კოსინუსი ჩაიწერება ფუნქციური აღნიშვნის გამოყენებით, აბრევიატურებით sin და cos.
თუ არგუმენტი საკმაოდ მარტივია, ფუნქცია შეიძლება წარმოვადგინოთ როგორც და არა როგორც .
სინუსისა და კოსინუსი არის კუთხის ფუნქციები და ჩვეულებრივ გამოისახება რადიანებსა და გრადუსებში, თუ სხვა რამ არ არის დაკონკრეტებული.
Remove ads
განსაზღვრება
მართკუთხა სამკუთხედი
α მახვილი კუთხის სინუსის განსასაზღვრად მართკუთხა სამკუთხედში მის მოპირდაპირე გვერდს (კათეტს) ვაფარდებთ ჰიპოტენუზასთან, კოსინუსის შემთხვევაში კი მიმდებარეს ვაფარდებთ ჰიპოტენუზასთან.
ერთეულოვანი წრეწირი

ერთი ერთეულის სიგრძის რადიუსის მქონე წრეწირში (ერთეულოვან წრეწირში), სინუსი განსაზღვრულია როგორც y კოორდინატი, კოსინუსი კი x კოორდინატი. რადიუსი მოძრაობას იწყებს საათის ისრის მოძრაობის საწინააღმდეგო (დადებითი) მიმართულებით და მის თითოეულ პოზიციას შეესაბამება კუთხე (რადიანებში), რომელსაც რადიუსი დადებით x-ღერძთან ადგენს, პირობითად θ კუთხე.
წერტილს, რომელიც წრეწირზე ძევს, შეესაბამება პირობითი კოორდინატები (a, b). თუკი წერტილიდან x ღერძისკენ დავუშვებთ სიმაღლეს, შეიქმნება მართკუთხა სამკუთხედი, რომლის ჰიპოტენუზა იქნება 1 (რადგან ერთეულოვანი წრეწირი გვაქვს). θ კუთხის სინუსი იქნება:, ანუ b, რადგან მოპირდაპირე კუთხის სიგრძე ემთხვევა წერტილის კოორდინატს y ღერძზე. ანალოგიურადაა კოსინუსის შემთხვევაშიც: .
ფუნქცია

- ფუნქციის განსაზღვრის არეა , მნიშვნელობათა სიმრავლე კი .
- სინუს ფუნქცია კენტია, რადგან ნებისმიერი -ისათვის , ვინაიდან და წერტილთა კოორდინატები მხოლოდ ნიშნით განსხვავდებიან.
- პერიოდულია და მისი უმცირესი დადებითი პერიოდია , ანუ ნებისმიერი
- ფუნქცია ზრდადია შუალედში და კლებადია შუალედში, რადგან სინუსი პერიოდულია ცხადია , იგი ზრდადია ნებისმიერ , ხოლო კლებადია შუალედში
- ფუნქცია სიმეტრიულია (0,0) წერტილის მიმართ, რადგან ნებისმიერი -ისათვის და მის გრაფიკს სინუსოიდა ეწოდება.
ფუნქცია
- ფუნქციის განსაზღვრის არეა , ხოლო მნიშვნელობათა სიმრავლე
- ფუნქცია ლუწია, რადგან ნებისმიერ -ისათვის ,ვინაიდან აბცისთა ღერძის მიმართ და წერტილების აბცისები ტოლია
- ფუნქცია პერიოდულია და მისი უმცირესი დადებითი პერიოდია , რაც ნიშნავს ,
- ფუნქცია ზრდადია შუალედში , ხოლო კლებადია შუალედში. იქიდან გამომდინარე , რომ კოსინუსის უმცირესი დადებითი პედიოდია , გამომდინარეობს , რომ იგი ზრდადია ნებისმიერ შუალედში , ხოლო კლებადია შუალედში
- კოსინუსის ფუნქციის გრაფიკი სიმეტრიულია OY ღერძის მიმართ , რადგან ლუწი ფუნქციაა. ნებისმიერი -ისათვის
- ფუნქციის გრაფიკს კოსინუსოიდა ეწოდება
Remove ads
იგივეობები
იგივეობები (რადიანის გამოყენებით):
ეს ეხება ყველა მნიშვნელობას.
პითაგორას ტრიგონომეტრიული იგივეობა
ეს იგივეობა გამომდინარეობს იქიდან, რომ ერთეულოვან წრეწირში სინუსი Y კოორდინატია, კოსინუსი X და ჰიპოტენუზა — რადიუსი (1), ანუ სინუსისა და კოსინუსის კვადრატების ჯამი 1-ია
სადაც sin 2 (x) ნიშნავს sin(x)) 2 -ს.
ორმაგი არგუმენტის ფორმულები
ორი არგუმეტის ჯამისა და სხვაობის ფორმულები
ნახევარი არგუმენტის ფორმულები
სამმაგი არგუმენტის ფორმულები
ხარისხის დაყვანის ფორმულები
Remove ads
მეოთხედებთან დაკავშირებული თვისებები

Remove ads
თეორემები
სინუსების თეორემა გვიჩვენებს, რომ სამკუთხედისთვის a, b და c გვერდებით და A, B და C გვერდების მოპირდაპირე კუთხეებით:
ეს ეკვივალენტურია ქვემოთ მოცემული პირველი სამი გამოსახულებისა:
სადაც R არის სამკუთხედზე შემოხაზული წრეწირის რადიუსი .
კოსინუსების თეორემიდან ვიცით, რომ სამკუთხედისთვის a, b და c გვერდებისა და A, B და C გვერდების მოპირდაპირე კუთხეების მქონე სამკუთხედისთვის:
როცა (ანუ მართია), და ეს გადაიქცევა პითაგორას თეორემად: მართკუთხა სამკუთხედისთვის, სადაც c არის ჰიპოტენუზა.
Remove ads
მათემატიკური თეგები
<math>\sin</math>
— ,<math>\sin {\alpha}</math>
— ;<math>\cos</math>
— ,<math>\cos {\alpha}</math>
— .
Remove ads
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads