환 달린 공간
은 위상 공간
와 그 위의 가환환의 층
의 순서쌍이다.
를
의 구조층(構造層, 영어: structure sheaf)라고 한다.
두 환 달린 공간
,
사이의 사상(寫像, 영어: morphism of ringed spaces)
은 다음과 같은 순서쌍이다.
는 연속 함수이다.
는 가환환의 층의 사상이다. 구체적으로,
의 각 열린집합
에 대하여,
는 환 준동형이며, 이는 제한 사상과 호환되어야 한다.
국소환 달린 공간
국소환 달린 공간(局所環달린空間, 영어: locally ringed space)은 구조층의 모든 줄기가 국소환인 환 달린 공간이다. (각 열린집합
에 대해
가 국소환일 필요는 없다.)
두 국소환 달린 공간 사이의 사상(寫像, 영어: morphism of locally ringed spaces)
은 다음과 같은 환 달린 공간의 사상이다.
- 임의의
에 대하여,
로 인하여 유도되는 줄기 사이의 환 준동형
아래,
의 유일한 극대 아이디얼의 원상은
의 유일한 극대 아이디얼과 같다.
열린 몰입
환 달린 공간 사상
이 다음 조건들을 모두 만족시킨다면, 이를 열린 몰입(영어: open immersion)이라고 한다.
의 치역
은 열린집합이며,
는 치역으로의 위상 동형을 정의한다.
이 층의 동형 사상
을 유도한다.
환 달린 공간
및
의 열린집합
가 주어졌을 때,
는 환 달린 공간을 이루며, 자연스러운 포함 사상
은 열린 몰입을 이룬다. 만약
가 국소환 달린 공간이라면
역시 국소환 달린 공간이며, 포함 사상은 국소환 달린 사상을 이룬다.
모든 열린 몰입은 이러한 꼴의 사상과 동형이다. 즉, 열린 몰입은 그 치역에 따라 결정된다.
닫힌 몰입
환 달린 공간 사상
이 다음 조건들을 모두 만족시킨다면, 이를 닫힌 몰입(영어: closed immersion)이라고 한다.
의 치역은 닫힌집합이며,
는 치역으로의 위상 동형을 정의한다.
는 가환환 값의 층의 전사 사상이다. 즉, 모든 줄기 사상
은 전사 함수이다.
환 달린 공간
위의 아이디얼 층
이 주어졌다고 하자. 그렇다면, 그 지지 집합
은 닫힌집합이다.
위의 몫층
을 정의할 수 있으며,
는 닫힌 몰입을 이룬다. 만약
가 국소환 달린 공간이라면
역시 국소환 달린 공간이며, 포함 사상은 국소환 달린 사상을 이룬다.
모든 닫힌 몰입은 이러한 꼴의 사상과 동형이다. 즉, 닫힌 몰입은 그 아이디얼 층에 따라 결정된다. 이름과 달리, 닫힌 몰입은 그 지지 집합인 닫힌집합에 의하여 결정되지 않는다.