상위 질문
타임라인
채팅
관점

등변 미분 형식

위키백과, 무료 백과사전

Remove ads

미분기하학에서 등변 미분 형식(等變微分形式, 영어: equivariant differential form)은 리 군의 작용과 호환되는, 하나의 리 대수 변수에 대한 미분 형식 계수의 다항식이다.[1] 이를 사용하여, 드람 코호몰로지와 유사하게 등변 코호몰로지를 계산할 수 있다.

정의

요약
관점

다음 데이터가 주어졌다고 하자.

  • 매끄러운 다양체
  • 리 군 . 그 리 대수라고 하자.
  • 위의 매끄러운 왼쪽 작용 .

그렇다면, 위의 -등변 미분 형식 는 다음 벡터 공간의 원소이다.

여기서 쌍대 공간이며, 위의 복소수 계수 미분 형식들의 복소수 벡터 공간이다. 이러한 원소는 다항식 사상

으로 간주할 수 있는데, 이 경우 는 다음 조건을 만족해야 한다.[1]:208, §7.1

여기서 딸림표현이다.

Remove ads

연산

요약
관점

등변 미분 형식 위에는 다음과 같은 등변 외미분(等變外微分, 영어: equivariant exterior derivative)을 정의할 수 있다.

여기서

이는 (일반 외미분과 마찬가지로)

을 만족시키며, 이에 따라 코호몰로지를 취할 수 있다. 이에 대한 코호몰로지는 등변 코호몰로지와 일치한다.

또한, 이를 통해 등변 완전 미분 형식(等變完全微分形式, 영어: equivariantly exact differential form) 및 등변 닫힌 미분 형식(等變-微分形式, 영어: equivariantly closed differential form)을 정의할 수 있다.[1]:209, §7.1

Remove ads

역사

등변 미분 형식의 개념은 앙리 카르탕이 도입하였다.[2]:§6, 6–9[1]:209, §7.1[3]:§2.4

각주

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads