란다우 토션트 상수(Landau's totient constant)[1] C L t = ∏ p ( 1 + 1 p ( p − 1 ) ) = 315 2 π 4 ζ ( 3 ) = 1.943596436820759205057070... {\displaystyle C_{Lt}=\prod _{p}\left(1+{{1} \over {p(p-1)}}\right)={{315} \over {2\pi ^{4}}}\zeta (3)=1.943596436820759205057070...} (OEIS의 수열 A082695) C L t = 315 2 π 4 ζ ( 3 ) = 1 ζ ( 2 ) ζ ( 3 ) ζ ( 6 ) = ζ ( 2 ) ζ ( 3 ) ζ ( 6 ) = ∑ s = 1 ∞ ( μ ( s ) ) 2 s ϕ ( s ) {\displaystyle C_{Lt}={{315} \over {2\pi ^{4}}}\zeta (3)={{1} \over {{\zeta (2)\zeta (3)} \over {\zeta (6)}}}={{\zeta (2)\zeta (3)} \over {\zeta (6)}}=\sum _{s=1}^{\infty }{{(\mu (s))^{2}} \over {s\phi (s)}}\;\;\;} [2][3][4] ζ ( p ) {\displaystyle \zeta (p)} 리만 제타 함수 , μ ( s ) {\displaystyle ,\;\;\mu (s)} 뫼비우스 함수 , ϕ ( s ) {\displaystyle ,\;\;\phi (s)} 오일러 피 함수 Remove ads알틴 상수와 란다우 토션트 상수 C L t = {\displaystyle C_{Lt}=} 란다우 토션트 상수 C L t = ∏ p ( 1 + 1 p ( p − 1 ) ) {\displaystyle C_{Lt}=\prod _{p}\left(1+{{1} \over {p(p-1)}}\right)} = ∏ p ( p 2 − p + 1 p 2 − p ) {\displaystyle \;\;\;=\prod _{p}\left({{p^{2}-p+1} \over {p^{2}-p}}\right)} = ∏ p ( p 2 − p p 2 − p ) + ( 1 p 2 − p ) {\displaystyle \;\;\;=\prod _{p}\left({{p^{2}-p} \over {p^{2}-p}}\right)+\left({{1} \over {p^{2}-p}}\right)} C A = {\displaystyle C_{A}=} 알틴 상수 C A = ∏ p ( 1 − 1 p ( p − 1 ) ) {\displaystyle C_{A}=\prod _{p}^{}\left(1-{{1} \over {p(p-1)}}\right)} = ∏ p ( p 2 − p − 1 p 2 − p ) {\displaystyle \;\;\;=\prod _{p}^{}\left({{p^{2}-p-1} \over {p^{2}-p}}\right)} = ∏ p ( p 2 − p p 2 − p ) − ( 1 p 2 − p ) {\displaystyle \;\;\;=\prod _{p}\left({{p^{2}-p} \over {p^{2}-p}}\right)-\left({{1} \over {p^{2}-p}}\right)} C L t = C A + ( 1 p 2 − p ) + ( 1 p 2 − p ) {\displaystyle C_{Lt}=C_{A}+\left({{1} \over {p^{2}-p}}\right)+\left({{1} \over {p^{2}-p}}\right)} C A = C L t − ( 1 p 2 − p ) − ( 1 p 2 − p ) {\displaystyle C_{A}=C_{Lt}-\left({{1} \over {p^{2}-p}}\right)-\left({{1} \over {p^{2}-p}}\right)} Remove ads같이 보기 스티븐스 상수 토션트 상수 각주Loading content...Loading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.Remove ads