상위 질문
타임라인
채팅
관점

원통셸 방법

적분 방법의 하나 위키백과, 무료 백과사전

원통셸 방법
Remove ads

원통셸 방법(shell method) 또는 원통셸 적분(Shell integration)은 회전체 축의 수직 축을 따라 적분하여 회전체 부피계산하는 방법이다. 이 방법은 회전체 축과 평행한 축을 따라 적분하는 디스크 방법과는 서로 방배되는 적분 방법이다.

Thumb
그림에서 입체의 부피는 가운데 구멍이 있는 원통셸 모임의 합으로 근사할 수 있다. 원통셸의 두께가 작으면 작을수록 이 근사값은 실제 부피와 점점 같아진다. 이 근사값의 극한값을 구하는 것이 원통셸 방법이다.

정의

요약
관점

원통셸 방법은 다음과 같이 이용할 수 있다. xy면에 있는 단면을 y축을 따라 회전하여 생긴 회전체의 부피를 구하는 경우를 생각해보자. 단면 함수가 폐구간 [a, b]에서 양의 값을 가지는 함수 f(x)로 정의되는 그래프라고 가정하자. 그러면 부피 공식은 다음과 같이 쓸 수 있다.

만약 함수가 y의 함수로 정의되고 회전축이 x가 될 경우 공식은 다음과 같이 바뀐다.

만약 함수가 x=h 또는 y=k을 회전축으로 잡을 경우, 공식은 다음과 같이 바뀐다.

그리고

이 식은 극좌표계에서 중적분 계산으로 도출할 수 있다.

Remove ads

예시

요약
관점

닫힌 구간 [1, 2]에서 다음과 같은 식으로 정의된 회전체의 부피를 구하는 법을 생각해 보자.

예시를 그림으로 본 모습
Thumb
단면도
Thumb
3D 입체

이 경우 디스크 방법을 통해서는 xy에 대해 풀어야 하는 과정을 거쳐야 한다. 이 회전체는 가운데에 구멍이 뚫린 형태이기 때문에 바깥 부분으로 나타나는 부피와 안 부분으로 나타나는 부피 2가지가 도출된다. 디스크 방법은 두 부피를 구한 다음에 바깥 부분 부피에서 안쪽 부분 부피를 빼는 과정을 거쳐야 한다.

반면 원통셸 방법을 사용할 경우 공식은 다음과 같이 정리된다.

다항식을 전개한 후 적분하는 간단한 과정을 거치면 된다. 여기서 우리가 찾는 부피는 라는 계산이 나온다.

Remove ads

같이 보기

참고 문헌

  • Weisstein, Eric Wolfgang. Method of Shells. Wolfram MathWorld (영어). Wolfram Research.
  • Frank Ayres, Elliott Mendelson. Schaum's Outlines: Calculus. McGraw-Hill Professional 2008, ISBN 978-0-07-150861-2. pp. 244–248 (online copy - 구글 도서)
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads