상위 질문
타임라인
채팅
관점
유계 작용소
위키백과, 무료 백과사전
Remove ads
함수해석학에서 유계 작용소(有界作用素, 영어: bounded operator)는 유계 집합을 항상 유계 집합에 대응시키는, 두 위상 벡터 공간 사이의 선형 변환이다. 두 노름 공간 사이의 경우, 유계 작용소의 개념은 연속 선형 변환의 개념과 일치한다.
정의
요약
관점
위상체 위의 두 위상 벡터 공간 , 가 주어졌다고 하자. 그렇다면, -선형 변환 가 다음 조건을 만족시키면, 를 유계 작용소라고 한다.[1]:24, §1.31
즉, 이는 유계형 집합의 사상을 이룬다.
여기서, 위상 벡터 공간 의 부분 집합 이 다음 조건을 만족시킨다면 유계 집합이라고 한다.
- 임의의 0의 근방 에 대하여, 인 가 존재한다.
와 사이의 유계 작용소들의 집합은 라고 한다. 이는 자연스럽게 -벡터 공간을 이룬다.
균등 공간 구조
이에 따라, 함수 집합 위에 균등 수렴 위상 및 균등 구조를 부여할 수 있으며, 그 부분 집합 에도 자연스럽게 균등 공간 구조 및 위상을 부여할 수 있다. 이에 따라 는 -위상 벡터 공간을 이룬다.
작용소 위상
유계 작용소의 공간 위에 균등 위상 (또는 균등 위상에 대한 약한 위상) 대신, 다음과 같은 더 엉성한 위상인 강한·약한 작용소 위상을 부여할 수도 있다.
함수 집합 에 곱위상을 부여하면, 이므로 에 부분 공간 위상을 부여할 수 있다. 이를 강한 작용소 위상(強한作用素位相, 영어: strong operator topology)이라고 한다.
마찬가지로, 에 약한 위상을 부여한 것을 로 놓고, 함수 집합 에 곱위상을 부여하면, 부분 공간 위상 을 약한 작용소 위상(弱한作用素位相, 영어: weak operator topology)이라고 한다.
강한·약한 작용소 위상은 정의에 따라 의 노름이나 위상에 의존하지 않는다.
Remove ads
성질
요약
관점
연속성과의 관계
위상체 위의 두 위상 벡터 공간 , 사이의 모든 연속 -선형 변환은 유계 작용소이다.[1]:24, Theorem 1.32[2]:III.4, Proposition III.1.4
증명:
만약 이며, 와 가 -노름 공간일 경우, 유계 작용소 · 연속 선형 변환 · 균등 연속 선형 변환 · 립시츠 연속 선형 변환의 개념이 서로 동치이다.[1]:24, Theorem 1.32 (그러나 이는 일반적인 위상 벡터 공간에 대하여 성립하지 않는다.[3]:253, Example 8.8.8)
작용소 노름
만약 이며, 와 가 -노름 공간일 경우, 는 작용소 노름을 통해 노름 공간을 이룬다.[1]:92–93, Theorem 4.1 만약 가 바나흐 공간이라면, 역시 바나흐 공간을 이룬다.[1]:92–93, Theorem 4.1
유계 작용소 공간 위의 위상의 관계
자명하게 다음과 같은 관계가 성립한다.
균등 수렴 위상 ⊃ 강한 작용소 위상 ∪ ∪ 균등 수렴 위상의 약한 위상 약한 작용소 위상
여기서 A ⊃ B는 A가 B보다 더 섬세한 위상이라는 뜻이다.
실수체 또는 복소수체 위의 두 노름 공간 사이의 유계 작용소 공간의 경우, 다음이 추가로 성립한다.
균등 수렴 위상 ⊃ 강한 작용소 위상 ∪ ∪ 균등 수렴 위상의 약한 위상 ⊃ 약한 작용소 위상
Remove ads
예
요약
관점
두 유한 차원 노름 공간 사이의 모든 선형 변환은 유계 작용소이다.
르베그 실수열 공간 위의 연산자
는 노름이 1인 유계 작용소이다.
각주
외부 링크
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads