상위 질문
타임라인
채팅
관점
제약된 극값 정리
위키백과, 무료 백과사전
Remove ads
제약된 극값 정리(制約된 極값 定理, 영어: constrained extremum theorem)는 선형대수학의 정리로, 이차 형식의 최댓값과 최솟값을 단위구 상에서 구할 때의 조건에 관한 내용이다.[1]
공식화
요약
관점
A를 실수 성분만을 갖는 n×n인 대칭행렬이라 하고, 그 크기의 내림차순으로 배열된 고윳값을 라 하자. 그러면, 제약된 극값 정리는 다음 세 명제가 성립하는 것으로 표현할 수 있다.[1]
- 단위구 ||x|| = 1 위에 xTAx의 최댓값과 최솟값이 존재한다.
- 최댓값은 가장 큰 고윳값인 이고, 이 최댓값은 x가 에 대응하는 A의 단위 고유벡터일 때 존재한다.
- 최솟값은 가장 작은 고윳값인 이고, 이 최솟값은 x가 에 대응하는 A의 단위 고유벡터일 때 존재한다.
여기서 조건인 ||x|| = 1를 제약(constraint)이라 하고, 이 제약에서 xTAx의 최댓값 또는 최솟값을 제약된 극값(constrained extremum)이라 한다.[1]
Remove ads
같이 보기
각주
참고 문헌
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads