상위 질문
타임라인
채팅
관점

칸토어 집합

프랙털 실수 집합의 하나 위키백과, 무료 백과사전

Remove ads

수학에서 칸토어 집합(영어: Cantor set)은 0과 1 사이의 실수로 이루어진 집합으로, 부터 시작하여 각 구간을 3등분하여 가운데 구간을 반복적으로 제외하는 방식으로 만들어진다.

Thumb
칸토어 집합을 제작하기 위해 7번 반복한 과정

정의

요약
관점

칸토어 집합은 다음과 같이 만들어진다.

  1. 처음 구간은 에서 시작한다.
  2. 구간을 3등분한 후, 가운데 개구간 을 제외한다. 그러면 가 남는다.
  3. 두 구간 , 의 가운데 구간을 제외한다.
  4. 계속해서 반복한다.

또는, 앞 단계의 구간을 크기로 줄인 다음 두 개를 배치하는 방식으로도 같은 집합을 얻을 수 있다. 즉,

이 된다.

Remove ads

성질

요약
관점

크기

칸토어 집합에 포함되는 수는 삼진법 소수로 표기했을 때 모든 자릿수가 0 또는 2가 된다. 이것은 칸토어 집합을 만드는 각 단계마다 자릿수에 1이 있는 수를 점차적으로 제거하는 것으로 생각할 수 있다. 즉, 첫 번째 단계에는 가 빠지고, 두 번째 단계에는 가 빠지는 과정이 계속해서 일어난다. 또한 이것을 이용해 칸토어 집합의 수를 0과 1 사이의 모든 실수와 일대일 대응시킬 수 있는데, 3진수 각 자릿수의 2를 2진수에서의 1로 대응한다. 수식으로 표현하면 다음과 같다.

따라서 칸토어 집합은 비가산 집합이며, 크기가 이다.

측도 및 위상수학적 성질

칸토어 집합을 만드는 과정에서, 각 단계에서 빠지는 구간의 길이는 이 된다. 이 길이를 모두 합하면

이 된다. 즉, 칸토어 집합은 르베그 측도가 0이다. 또한, 칸토어 집합은 조밀한 곳이 없는 집합이며, 완전 집합이다.

칸토어 집합은 가산 무한 개의 두 원소 이산 공간곱공간 위상동형이다. 특히, 칸토어 집합의 작은 귀납적 차원은 0이다.

프랙털 성질

칸토어 집합은 자기닮음 성질을 가지고 있는 프랙털이다. 칸토어 집합을 ⅓ 크기로 줄이면 원래 칸토어 집합의 왼쪽 부분과 같다. 따라서 칸토어 집합의 하우스도르프 차원

이다.

Remove ads

같이 보기

외부 링크

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads