mehāniskas svārstības, kas elastīgu viļņu veidā izplatās cietā, šķidrā vai gāzveida vidē; šādas svārstības, kas rada dzirdes sajūtas From Wikipedia, the free encyclopedia
Skaņa ir mehāniskās enerģijas pārvietošanās elastīgā vielā svārstību veidā. Skaņu apraksta vairāki fizikāli lielumi, kā piemēram, frekvence, viļņa garums, amplitūda, periods, skaņas ātrums utt. Skaņa neizplatās vakuumā. Lai gan skaņa izplatās gan cietos ķermeņos, gan šķidrumos, visbiežāk apskata skaņu gaisā. Skaņa gaisā ir statiskā spiediena izmaiņas. Katrai skaņai ir savs cēlonis. Skaņas avots bieži ir kāds kustībā esošs ķermenis, bet cēlonis var būt arī elektriskā izlāde dzirksteļu vai zibens veidā. Skaņu izraisošās svārstības ne vienmēr ir pamanāmas ar aci, taču bez svārstībām skaņu nav. Dabā var novērot daudzas un dažādas svārstības, kā, piemēram, koku zaru šūpošanos vējā, šūpoļu šūpošanos, ūdens virsmas viļņošanos. Skaņas vienmēr ir ap mums, kaut dažreiz tās pat neievērojam: cilvēku sarunāšanās, putnu vīterošana, koku lapu čaboņa vējā, ūdens šalkas, automobiļu motora troksnis. Par skaņu sauc arī dzirdes bojājumu rezultātā radušos sīcoņu ausīs - tinnītu. Dzirdot skaņu, parasti raugāmies, no kurienes tā nāk un kas to rada. Dzīvo būtņu spēju noteikt skaņas avota virzienu un attālumu sauc par lokalizāciju. Svārstību biežumu vienā sekundē sauc par svārstību frekvenci. Frekvences vienība ir viena svārstība sekundē. Šo vienību sauc par hercu un apzīmē ar Hz.[1]
Tomēr ne visas svārstības ir dzirdamas. Skaņu dzirdēt ir iespējams tikai tad, kad tās avota svārstības nav pārāk retas vai arī pārāk biežas. Lielākajai daļai cilvēkiem dzirdamo skaņu zemākā frekvence ir aptuveni 20 Hz, bet augstākā frekvence - ap 20 000 Hz.[2] Diemžēl, cilvēkam novecojot, samazinās spēja sadzirdēt augstākās frekvences. Cilvēki skaņu uztver ar ausīm. Gaisa daļiņu kustība iesvārsta ausu bungādiņu. Tālāk šīs mehāniskās svārstības ar 3 mazu kauliņu palīdzību iesvārsta auss gliemežnīcas bazilāro membrānu. Auss gliemežnīca mehāniskās svārstības pārvērš impulsos un tie tiek aizvadīti pa nerviem uz smadzenēm. Cilvēki un vairums dzīvnieku skaņas uztver ar ausīm. Tās skaņas svārstības pārveido signālos, kas pa dzirdes nervu nonāk galvas smadzenēs, radot dzirdes sajūtu. Skaņas izraisītās auss bungādiņas svārstības ir ļoti mazas. Cilvēks katrai skaņai subjektīvi var noteikt tās skaļumu. Skaņas skaļuma subjektīvais vērtējums ir atkarīgs no frekvences un skaņas spiediena līmeņa.
Objektīvi skaņu raksturo skaņas spiediena un intensitātes līmeņi, ko mēra decibelos (dB). Cilvēkam vājākās sadzirdamās skaņas atbilst dažiem desmitiem decibelu. Savukārt skaļākās skaņas jau sasniedz simts un vairāk decibelus. Visvājākās skaņas, ko cilvēks spēj saklausīt, sauc par dzirdamības slieksni. Ļoti stipras skaņas var izraisīt sāpju sajūtu ausī. Tās sauc par sāpju slieksni. Ilgstoši atrodoties augsta skaņas spiediena zonās, cilvēks var iegūt neatgriezenisku dzirdes bojājumu vienā vai abās ausīs. Skaņas spiediena līmenis tiek definēts šādi:
Skaņas viļņus veido molekulas, kas svārstās uz priekšu un atpakaļ. Katrā laika momentā kādās vietās molekulas sablīvējas, radot augsta spiediena apgabalus, turpretī no citām vietām tās aiziet prom, veidojot zema spiediena apgabalus. No skaņas avota augsta un zema spiediena apgabalu viļņi pārmaiņus izplatās gaisā. Šie skaņas viļņi aiznes skaņu līdz mūsu ausīm.[3] Arī skaņa izplatās kā vilnis. Tikai skaņas vilnis veidojas savādāk nekā vilnis uz ūdens, kurā iemet akmeni. Skaņas vilnis gaisā ir gaisa blīvuma svārstības, kas izplatās telpā. Gaiss pārmaiņu sablīvējas un izretinās, un tas notiek skaņu svārstību frekvences dēļ. Tāpat kā vilni uz ūdens virsmas, arī skaņas vilni raksturo viļņa garums - attālums starp diviem secīgiem gaisa sablīvējumiem vai retinājumiem. Ūdenī skaņas viļņa garums ir aptuveni četras reizes lielāks nekā gaisā, jo ūdenī skaņa izplatās ātrāk.
Skaņas ātrums ir skaņas viļņa noietais attālums laika vienībā. Skaņas izplatīšanās ātrums gaisā pirmo reizi precīzi tika izmērīts tikai 1822. gadā. Šos mērījumus veica ievērojamu dabas pētnieku grupa: dabaszinātnieks Aleksandrs Humbolts, gāzu likumsakarību atklājējs Žozefs Luiss Gē-Lisaks un vēl citi dabas pētnieki. Šajā pētījumā tika noskaidrots, ka gaisā 0 grādos pēc Celsija skaņa izplatās ar ātrumu 331 m/s. Gaisā skaņa vienu kilometru veic aptuveni trijās sekundēs. Tukšumā (vakuumā) skaņa neizplatās. [4]
Vispārīgā gadījumā kādā vidē skaņas ātrumu aprēķina pēc formulas:
kur v - skaņas izplatīšanās ātrums, k - koeficients, kas raksturo vides elastību, - vides blīvums.
Gāzēs skaņas ātrumu aprēķina pēc Laplasa formulas:
kur v ir skaņas izplatīšanās ātrums, T ir temperatūra kelvinos, M ir molmasa, R ir universālā gāzu konstante, cp un cv ir īpatnējā siltumietilpība.
Izotropā cietķermenī, kuram ir gara un taisna cilindra forma, skaņas ātrumu aprēķina pēc šādas formulas:
kur v ir skaņas izplatīšanās ātrums, ir vides blīvums, E ir Junga modulis
Vēlāk arī tika noskaidrots, ka visās vielās skaņas ātrums nav vienāds. Tas mainās atkarībā no apstākļiem, kādos viela atrodas. Skaņas ātrums pieaug, temperatūrai paaugstinoties. Tātad ziemā skaņa izplatās lēnāk nekā siltākajos gadalaikos - vasarā, pavasarī. Arī vielas stāvokļi ietekmē skaņas ātrumu. Cietās vielās skaņas ātrums ir lielāks par skaņas ātrumu vielā, kas atrodas šķidrā stāvoklī. Savukārt vielā, kas atrodas šķidrā stāvoklī skaņas ātrums izplatās ātrāk nekā gāzē. Tātad, piemēram, ūdens ir labāks skaņas vadītājs nekā gaiss. Tāpēc zem ūdens tālu var dzirdēt zemūdens dzinēju troksni.
Viela vai vide | Skaņas ātrums m/s |
---|---|
Vakuums | neizplatās |
Acetons | 327 |
Gaiss pie 0°C | 344 |
Slāpeklis | 334 |
Ūdens tvaiks | 494 |
Korķis | 430-530 |
Hēlijs | 965 |
Ūdeņradis | 1284 |
Ūdens | 1483 |
Glicerīns | 1923 |
Koks priede | 5030 |
Varš | 3710 |
Čuguns | 3850 |
Granīts | 3950 |
Ozola koks | 4050 |
Dzelzs | 5850 |
Kvarca smilts | 5370 |
Stikls | 5600 |
Skaņas izplatīšanās dažādās vielās atšķiras ne tikai ar skaņas ātrumu. Palielinoties attālumam līdz skaņas avotam, samazinās dzirdamība - skaņa kļūst aizvien vājāka, līdz to vispār nedzird. Šī parādība ir skaņas rimšana. Skaņas vilnim izplatoties vielā, viļņa svārstības pamazām noplok. Viela skaņu it kā "uzsūc" jeb absorbē. Grūti iedomāties to skaņu jūkli, kādu mēs saklausītu vienlaikus, ja viela skaņas neabsorbētu, ja neviena skaņa gaisā un ūdenī nerimtu. Zināšanas par skaņas rimšanu ir ļoti nepieciešamas, būvējot jaunas ēkas. Katram zināms, cik neērta ir istaba ar plānām sienām, caur kurām dzirdams viss, kas notiek kaimiņos. Mājas sienām ir jāpasargā tās iemītnieki no āra trokšņiem. Tāpēc celtniecībā un telpu apdarē lieto skaņu izolējošus materiālus. Skaņu labi absorbē arī daudz irdenas, porainas, šķiedrainas vielas, kurās ir daudz gaisa - korķis, vate, zāģskaidas, izdedzis. Telpās skaņu labi "uzsūc" un traucē tai izplatīties mīkstās mēbeles, biezi aizkari, paklāji. Tāpēc lielā un tukšā istabā skan daudz labāk nekā pieblīvētā telpā.
Skaņas atstarošanās veidojas tad, kad skaņas, piemēram, izplatās gaisā, ceļā sastopot šķērsli. Skaņas atstarošanos dabā var novērot kā atbalsi. Atbalsi var dzirdēt, ja laika intervāls, kādā skaņa izplatās līdz šķērslim - atstarotājam, un pēc atstarošanās no tā atgriežas pie novērotāja ir lielāks nekā 0,05 - 0,1 sekunde. Arī skaņas atstarošanās likums ir tāds pats kā gaismai. Ja skaņas vilnis krīt slīpi pret gludu virsmu, tad tas tikpat slīpi tādā leņķī atgriežas atpakaļ telpā, no kuras tas nācis. Zinot skaņas izplatīšanās virzienu, to, tāpat kā gaismu var attēlot ar staru. Kur skaņas "stars" krusto šķēršļa virsmu, tur uz to krīt skaņas vilnis. Ja šajā krustpunktā pret virsmu novelk perpendikulu, var noteikt skaņas krišanas leņķi. No virsmas atstarošanās skaņas stars atgriežas atpakaļ tādā pašā atstarošanās leņķī. Protams, dabā reti, kad skaņa sastopas ar ideāli gludu šķērsli, un arī krītošās skaņas virziens nav strikti noteikts. Tāpēc arī parasti skaņa atstarojas vairākos virzienos uzreiz un izklīst telpā. Kad skaņas atstarošanās ir spēcīga galvenokārt vienā virzienā, atstaroto skaņu var dzirdēt kā balsi. Nelielā telpā atbalsi nedzird. Te attālums no runātāja vai cita skaņas avota līdz sienām un griestiem ir neliels. No tiem atstarotā skaņa gandrīz momentāli atgriežas atpakaļ un saplūst ar tiešo skaņu. Lai dzirdētu atbalsi, attālumam līdz šķērslim jābūt pietiekami lielam. Tāpēc atbalsi iespējams labi novērot pie upes, ja pretējā krastā ir gluda klints vai stāva, mežaina nogāze. Dažreiz atbalso arī attāla mežmala. Ja skaņa atstarojas no vairākiem šķēršļiem, sadzirdamas vairākkārtējas atbalsis. Tā parasti notiek lielās alās. Uzsaucot vai pat tikai runājot, skaņas daudzkārtēji atstarojas no alas sienām, līdz pakāpeniski norimst. Atstarotās skaņas stiprums vienmēr ir mazāks nekā tiešās skaņas stiprums, jo šķērslis arī uzsūc skaņu.[5]
Troksnis ir skaņu ar dažādu spiedienu frekvenci un intensitāti haotisks sakārtojums. Troksnis veidojas tad, ja tiek iesvārstīta viela no dažādiem skaņas avotiem ar dažādas frekvences viļņiem. Bieži šāda skaņu apkopojums cilvēkiem nepatīk. Nepatika pret spalgām skaņām mēdz būt gan fizioloģiskas, gan psiholoģiskas dabas.
Trokšņa spiediena līmenis: L=20log(p/p0) dB, kur p0 (dzirdamības slieksnis) = 2*10-5 Pa. Trokšņa līmeni telpā var izmērīt lietojot skalāro metodi vai lietojot aprēķinu metodi. Pastāv trokšņa sliekšņa līmenis LAeq un kritērija līmenis, kas nosaka pieļaujamo ekspozīciju uz cilvēku - ikdienas trokšņa ekspozīcijas līmenis LEX, 8st, dBA. Ikdienas trokšņa līmenis ietver visus trokšņus, kas ir darba vidē, tai skaitā impulsveida troksni.
Skaņas avots | Skaņas spiediens (Pa) | Trokšņa spiediena līmenis (dB) |
---|---|---|
Dzirdamības slieksnis ~ 2 kHz joslā - vesela cilvēka dzirdei | 0,00002 | 0 |
Klusa lapu čaboņa | 0,00006 | 10 |
Čuksti vai troksnis labi izolētā dzīvoklī | 0,0002-0,0006 | 20 |
Normāla sarunāšanās (1 metra attālumā no skaņas avota). | 0,002-0,02 | 45-65 |
Televizors - normālā skaļumā (1 metra attālumā no skaņas avota). | 0,02 | aptuveni 60 |
Telefona zvans | 0,03 | 70 |
Braucoša automašīna (10 metru attālumā no skaņas avota). | 0,02-0,2 | 60-80 |
Transportlīdzekļu trokšņi uz lielceļa (10 metru attālumā). | 0,2-0,6 | 80-90 |
Rokas motorzāģa rūkšana | 2 | 100 |
Rokkoncerts | 2,1 | 110 |
Tvaika mašīnas dzinējs (100 metru attālumā no skaņas avota). | 6-200 | 110-140 |
Sāpju slieksnis | 100 | 134 |
Kosmisko raķešu starta vieta | aptuveni 165 | |
1883. gadā Krakatas vulkāna izvirdums | aptuveni 180 | |
Kodolieroču ekspolozija | aptuveni 248 |
Ja vielas daļiņas tiek sablīvētas un retinātas ar svārstoša ķermeņa, piemēram, toņdakšas palīdzību, tad veidojas muzikāla skaņa.[6] Tonis ir viena no vienkāršākajām muzikālajām skaņām. Šos toņus visbiežāk rada mūzikas instrumentu stīgas, arī toņdakšas, cilvēka balss saišu periodiskas svārstības. Par toni sauc tādas svārstības, kas norisinās tikai ar vienu nemainīgu frekvenci. Šo frekveni sauc par toņa augstumu. Mūzikas instrumentu skaņu diapazonu neveido viena toņkārta. Katrai toņkārtai var rindot līdzās vēl nākamo, kurā tāpat ir septiņi pamattoņi, un tā atkal sākas ar skaņu do. Mūzikā par oktāvu sauc toņu rindu no do līdz do. Starp pamattoņiem, lai iegūtu vienmērīgāku un pilnīgāku muzikālo toņu virkni, ir ievietoti vēl tā sauktie pustoņi. Mūzikas instrumentu stīgu un stabuļu toņi savā starpā atšķiras ne tikai pēc augstuma, bet arī pēc tembra. Tembrs ir katra instrumenta skanējuma nokrāsa.
Runa ir skaņas, no kurām veidojas vārdi un frāzes. Skaņu radīšanai cilvēkam kalpo balss aparāts. Tas atrodas rīkles iekšējajā daļā. Balss aparātu veido divas elestīgas balss saites, starp kurām ir balss sprauga. Brīvi elpojot, balss sprauga ir atvērta. Runājot balss saites saspringst un balss sprauga gandrīz aizveras. Gaiss, plūstot caur sašaurināto balss spraugu, iesvārsta balss saites. Tās vibrē, un rodas artikulētas skaņas - cilvēks runā vai dzied. Mainot balss saišu saspringumu, mainās saišu vibrāciju biežums un līdz ar to skaņas augstums. Sievietēm un bērniem ir mazas balss saites, tāpēc viņu runas skaņas jeb balss ir augstas. Vīriešiem balss saites ir lielākas, viņi runā zemākās balsīs. Balss tembru un skaļumu ietekmē arī mutes un deguna dobumi, kas ir skaņas rezonatori. Tie piešķir un pastiprina skaņām nokrāsu, kas ir savdabīga katram cilvēkam. Cilvēka valodas skaņas stipri atšķiras no dzīvnieku skaņām. Valodas skaņas nav iedzimtas, bet iemācītas. Valodas skaņas veido cilvēku valodas vārdus, ja tās sakārtotas noteiktā secībā. Skaņas veido vārdus, savukārt tie tālāk veido vārdu savienojumus, no kuriem veidojas teikumi.[1]
Par infraskaņu sauc skaņu, kuras svārstības frekvence ir mazāka par dzirdamās skaņas apakšējo robežu, tas ir aptuveni 16 - 20 Hz.[7] Infraskaņas avotu visapkārt ir daudz.Tādi piemēram ir - visi dzinēji, sprādzieni, šāvieni. Arī pērkona zemo rūkoņu pavada infraskaņa, un tā ir ļoti spēcīga. Infraskaņu rada daudzi vibrējoši motori, tā rodas lielu sprādzienu laikā, kas satricina gaisu. Zemo nedzirdamo skaņu ietekme uz cilvēkiem un dzīvniekiem vēl nav pilnīgi noskaidrota. Zemo frekvenču svārstību iedarbībā cilvēks un vairums dzīvnieki dažkārt sajūt neizprotamu nemieru. Infraskaņu cilvēki nevar dzirdēt, jo tā ir pārāk zema, tomēr ja infraskaņa ir pārāk stipra cilvēki to var sajust. Cilvēks jūt spiedienu uz galvu, tā sāk sāpēt, parādās slikta pašsajūta un liels nogurums. Dažkārt tā pat samazina cilvēkam maņu orgānu jūtību, rada ausīs un mugurkaulā sāpju sajūtu, traucē smadzeņu darbību. Tuvojoties zemestrīcei, mājdzīvnieki kļūst nemierīgi. lai gan it kā nekas vēl neliecina par nelaimes tuvošanos. Zemestrīce vai vulkāna izvirdums vēl nav sācies, bet Zemes garozā jau radušās vājas zemo frekvenču svārstības, kas dzīvniekos izraisa satraukumu. Infraskaņas vājo absorbēšanās spēju dažādās vidēs izmanto tehnikā, piemēram, lai ar akustiskām metodēm atklātu tālus spēcīgus sprādzienus, pētītu zemūdens vidi un atmosfēras augšējos slāņus.
Ultraskaņa ir skaņa, kuras svārstības frekvence pārsniedz cilvēkam dzirdamās skaņas augšējo robežu, kas ir augstāka par 20000 Hz.[8] Ultraskaņas viļņi pārnes enerģiju, tos ir iespējams atstarot, lauzt un fokusēt. Ultraskaņu var radīt mākslīgi, bet tā ir sastopama arī dabā. Ultraskaņa, kā jau visa skaņas izplatās viļņu veidā, tikai ultraskaņas ferkvence ir augstāka par citām skaņām. Salīdzinot ar infraskaņu tās frekvence ir pat 1000 reizes augstāka. Salīdzinot ar citām skaņām, šķidrumos un cietās vielās, ultraskaņa izplatās labāk nekā zemfrekvences skaņas. Vislabāk ultraskaņa izplatās ūdenī. Ultraskaņu rada un dzird daudzi dzīvnieki, piemēram, suņi. Delfīni jūrā sazinās ar ultraskaņas palīdzību. Sikspārņi, kas dzīvo tumšās alās, orientējas ar ultraskaņas palīdzību. Ultraskaņas stars atstarojas no priekšmetiem un šķēršļiem, sikspārnis atstaroto signālu uztver un "redz", kur lidot. Sevišķi plaši ultraskaņu izmanto tehnikā un medīcīnā. Jūras dziļumu mēra ar eholotu - ierīci, kas raida un uztver ultraskaņas viļņus, zemūdens objektus meklē ar ultraskaņas stariem, šī skaņa tiek arī izmantota zemūdens sakaros. Medicīnā iekšējo orgānu apskatei izmanto ultraskaņu, kuras frekvence ir 3 - 6 miljoni hercu. Šo izmeklēšanas metodi sauc par ultrasonogrāiju, un to, piemēram, izmanto lai kontrolētu bērniņa attīstību mātes organismā. Ultrasonogrāfija ir veselībai nekaitīga.
Ne tikai cilvēks rada un uztver skaņas, bet arī dzīvnieki ar to palīdzību savā starpā sazinās.
Jau sirmā senatnē cilvēki valodu pierakstīja ar burtiem un mūziku - nošu rakstā, tomēr pašu skaņu ierakstīt un atskaņot izdevās tikai apmēram pirms 100 gadiem. Tā kā skaņa ir svārstība, tad bija jāizgudro ierīce, kas varētu tās atcerēties un atjaunot. Pirmā šāda ierīce bija skaņuplate. Skaņuplates ierakstīja skaņu studijā. Tur skaņu uztvēra ar mikrofoniem un pārvērta elektriskajās svārstībās. Pēc tam elektriskās svārstības iekustināja "adatu", kas it kā saskrāpēja īpašu metāla sagatavi. No tās rūpnīcā izgatavoja plastmasas kopijas - skaņuplates. Lai noklausītos ierakstu, atskaņotāja adatai ir jāslīd pa skaņuplati un jāsvārstās. Atskaņotājs šīs svārstības pārveidoja dzirdamajā skaņā. Šis šķietami vienkāšais skaņas ierakstīšanas paņēmiens ir saglabājies arī šodien, tikai ir radušies arī citi skaņas svārstību saglabāšanas paņēmieni.[9]
Tomass Alva Edisons (1847-1931) izgatavoja pirmo aparātu pirms simts gadiem, ar kuru varēja ierakstīt skaņas un pēc tam tās atskaņot. Viņš savu ierīci nosauca par fonogrāfu - skaņas rakstītāju. Edisona fonogrāfs sastāvēja no taurītes, ko nosedza plāna membrāna - tagadējo mikrofonu priekštece. Membrānu iesvārstīja taurītē ierunātās skaņas. Kopā ar membrānu svārstījās adata, kas uz vara folijas uzklātajā vaska kārtiņā iezīmēja līkloču celiņu. Foliju ripināja rotējošs disks. Tad, kad šādā veidā "saglabātās" skaņas svārstījās no jauna iesvārstīja adatu un membrānu, skaņu atkal varēja noklausīties.[10]
Par mūsu sadzīves ierīci ir kļuvis magnetofons. Ierakstot skaņu ar magnetofonu, skaņas celiņš tiek iezīmēts magnētiskajā lentē, kas slīd gar īpašu skaņas ieraksta galviņu. Šo celiņu cilvēks neredz. Skaņas svārstības, pārvērstas elektriskajās svārstībās, magnetizē lentei uzklātu speciālu magnētiskās vielas kārtiņu. Atskaņojot magnētisko lenti, notiek pretējs process. Lente noteiktā ātrumā slīd gar atskaņošanas galviņu. Magnētiskais skaņas celiņš tajā izraisa tādas pašas elektriskās svārstības kā skaņu ierakstot. Elektriskās svārstības savukārt iesvārsta skaļruņu membrānas, un rodas skaņa. Lai pasargātu magnetofona lenti no bojājumiem, tā tiek iemontēta kasetē.[9]
Veidojot skaņu ierakstus, ir svarīgi, lai ierakstītā skaņa iespējami precīzi atbilstu dzīvajam izpildījumam. Pašlaik par kvalitatīvāko, drošāko un izturīgāko skaņas saglabāšanas veidu tiek uzskatītas gaismas skaņuplates - kompaktdiski. Kompaktdiskus izgatavo no īpašas caurspīdīgas plastmasas. To virskārtā ar lāzeru iedzedzina spirālveida skaņas celiņus - mikroskopiskus padziļinājumus svīttriņas, kas satur visu informāciju par skaņdarbu. Tad diska virsmai uzputina plānu alumīnija kārtiņu, kuru pārklāj ar aizsargslāni - laku.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.