Ирационален број

From Wikipedia, the free encyclopedia

Ирационален број
Remove ads

Во математиката, ирационален број — кој било реален број кој не е рационален број, односно, тоа е број кој не е од облик n/m, каде n и m се цели броеви.

Thumb
Бројот Квадратен корен од 2 е ирационален

Ирационален број може да се дефинира и како непериодичен бесконечен децимален број.

Множеството од сите ирационални броеви е бесконечно множество и се означува со I.

Важи: R = QI, каде R — множеството на реални броеви, а Q на рационални броеви.

I — непреброиво (бидејќи множеството од рационални броеви е преброиво, а множеството од реални броеви е непреброиво).

Примери за ирационални броеви: , , , π, златен пресек итн.

Remove ads
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads