Посотјат различни процеси каде можат да се добијат пар електрон - позитрон. Во воздухот ( на пр. при електрични празнења ), но најпознато е расејувањето на фотоните од јадрата на атомите или молекулите.
Со помош на квантната механика процесот на создавање на парови може да се опише со квадруполниот диференцијален напречен пресек:[2]
![{\displaystyle {\begin{aligned}d^{4}\sigma &={\frac {Z^{2}\alpha _{fine}^{3}c^{2}}{(2\pi )^{2}\hbar }}|\mathbf {p} _{+}||\mathbf {p} _{-}|{\frac {dE_{+}}{\omega ^{3}}}{\frac {d\Omega _{+}d\Omega _{-}d\Phi }{|\mathbf {q} |^{4}}}\times \\&\times \left[-{\frac {\mathbf {p} _{-}^{2}\sin ^{2}\Theta _{-}}{(E_{-}-c|\mathbf {p} _{-}|\cos \Theta _{-})^{2}}}\left(4E_{+}^{2}-c^{2}\mathbf {q} ^{2}\right)\right.\\&-{\frac {\mathbf {p} _{+}^{2}\sin ^{2}\Theta _{+}}{(E_{+}-c|\mathbf {p} _{+}|\cos \Theta _{+})^{2}}}\left(4E_{-}^{2}-c^{2}\mathbf {q} ^{2}\right)\\&+2\hbar ^{2}\omega ^{2}{\frac {\mathbf {p} _{+}^{2}\sin ^{2}\Theta _{+}+\mathbf {p} _{-}^{2}\sin ^{2}\Theta _{-}}{(E_{+}-c|\mathbf {p} _{+}|\cos \Theta _{+})(E_{-}-c|\mathbf {p} _{-}|\cos \Theta _{-})}}\\&+2\left.{\frac {|\mathbf {p} _{+}||\mathbf {p} _{-}|\sin \Theta _{+}\sin \Theta _{-}\cos \Phi }{(E_{+}-c|\mathbf {p} _{+}|\cos \Theta _{+})(E_{-}-c|\mathbf {p} _{-}|\cos \Theta _{-})}}\left(2E_{+}^{2}+2E_{-}^{2}-c^{2}\mathbf {q} ^{2}\right)\right].\\\end{aligned}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/ff9871e8a58506dabaab65e0a880ab92510f6f37)
каде

Овој израз се добива со користење на квантно механичката симетрија меѓу создавањето на парови и запирното зрачење.
е атомскиот број,
е константата на фината структура,
е намалената Планкова константа и
е брзината на светлината. Кинетичките енергии
на позитронот и електронот соодветно се поврзани со енергиите
и импулсите
преку:

Зачувувањето на енергијата дава:

Импулсот
на виртуелниот фотон меѓу упадниот фотон и јадрото е:

каде насоките се дадени преку:

каде
е импулсот на упадниот фотон.
За да се разгледа односот меѓу енергијата на фотонот
и аголот на оддавање
меѓу фотонот и позитронот, со интеграција на квадруполниот напречен пресек преку просторните агли
and
Кен и Еберт [3] го наоѓаат дуплиот диференцијален напречен пресек,

со
![{\displaystyle {\begin{aligned}I_{1}&={\frac {2\pi A}{\sqrt {(\Delta _{2}^{(p)})^{2}+4p_{+}^{2}p_{-}^{2}\sin ^{2}\Theta _{+}}}}\\&\times \ln \left({\frac {(\Delta _{2}^{(p)})^{2}+4p_{+}^{2}p_{-}^{2}\sin ^{2}\Theta _{+}-{\sqrt {(\Delta _{2}^{(p)})^{2}+4p_{+}^{2}p_{-}^{2}\sin ^{2}\Theta _{+}}}(\Delta _{1}^{(p)}+\Delta _{2}^{(p)})+\Delta _{1}^{(p)}\Delta _{2}^{(p)}}{-(\Delta _{2}^{(p)})^{2}-4p_{+}^{2}p_{-}^{2}\sin ^{2}\Theta _{+}-{\sqrt {(\Delta _{2}^{(p)})^{2}+4p_{+}^{2}p_{-}^{2}\sin ^{2}\Theta _{+}}}(\Delta _{1}^{(p)}-\Delta _{2}^{(p)})+\Delta _{1}^{(p)}\Delta _{2}^{(p)}}}\right)\\&\times \left[-1-{\frac {c\Delta _{2}^{(p)}}{p_{-}(E_{+}-cp_{+}\cos \Theta _{+})}}+{\frac {p_{+}^{2}c^{2}\sin ^{2}\Theta _{+}}{(E_{+}-cp_{+}\cos \Theta _{+})^{2}}}-{\frac {2\hbar ^{2}\omega ^{2}p_{-}\Delta _{2}^{(p)}}{c(E_{+}-cp_{+}\cos \Theta _{+})((\Delta _{2}^{(p)})^{2}+4p_{+}^{2}p_{-}^{2}\sin ^{2}\Theta _{+})}}\right],\\I_{2}&={\frac {2\pi Ac}{p_{-}(E_{+}-cp_{+}\cos \Theta _{+})}}\ln \left({\frac {E_{-}+p_{-}c}{E_{-}-p_{-}c}}\right),\\I_{3}&={\frac {2\pi A}{\sqrt {(\Delta _{2}^{(p)}E_{-}+\Delta _{1}^{(p)}p_{-}c)^{2}+4m^{2}c^{4}p_{+}^{2}p_{-}^{2}\sin ^{2}\Theta _{+}}}}\\&\times \ln {\Bigg (}{\Big (}(E_{-}+p_{-}c)(4p_{+}^{2}p_{-}^{2}\sin ^{2}\Theta _{+}(E_{-}-p_{-}c)+(\Delta _{1}^{(p)}+\Delta _{2}^{(p)})((\Delta _{2}^{(p)}E_{-}+\Delta _{1}^{(p)}p_{-}c)\\&-{\sqrt {(\Delta _{2}^{(p)}E_{-}+\Delta _{1}^{(p)}p_{-}c)^{2}+4m^{2}c^{4}p_{+}^{2}p_{-}^{2}\sin ^{2}\Theta _{+}}})){\Big )}{\Big (}(E_{-}-p_{-}c)(4p_{+}^{2}p_{-}^{2}\sin ^{2}\Theta _{+}(-E_{-}-p_{-}c)\\&+(\Delta _{1}^{(p)}-\Delta _{2}^{(p)})((\Delta _{2}^{(p)}E_{-}+\Delta _{1}^{(p)}p_{-}c)-{\sqrt {(\Delta _{2}^{(p)}E_{-}+\Delta _{1}^{(p)}p_{-}c)^{2}+4m^{2}c^{4}p_{+}^{2}p_{-}^{2}\sin ^{2}\Theta _{+}}})){\Big )}^{-1}{\Bigg )}\\&\times \left[{\frac {c(\Delta _{2}^{(p)}E_{-}+\Delta _{1}^{(p)}p_{-}c)}{p_{-}(E_{+}-cp_{+}\cos \Theta _{+})}}\right.\\&+{\Big [}((\Delta _{2}^{(p)})^{2}+4p_{+}^{2}p_{-}^{2}\sin ^{2}\Theta _{+})(E_{-}^{3}+E_{-}p_{-}c)+p_{-}c(2((\Delta _{1}^{(p)})^{2}-4p_{+}^{2}p_{-}^{2}\sin ^{2}\Theta _{+})E_{-}p_{-}c\\&+\Delta _{1}^{(p)}\Delta _{2}^{(p)}(3E_{-}^{2}+p_{-}^{2}c^{2})){\Big ]}{\Big [}(\Delta _{2}^{(p)}E_{-}+\Delta _{1}^{(p)}p_{-}c)^{2}+4m^{2}c^{4}p_{+}^{2}p_{-}^{2}\sin ^{2}\Theta _{+}{\Big ]}^{-1}\\&+{\Big [}-8p_{+}^{2}p_{-}^{2}m^{2}c^{4}\sin ^{2}\Theta _{+}(E_{+}^{2}+E_{-}^{2})-2\hbar ^{2}\omega ^{2}p_{+}^{2}\sin ^{2}\Theta _{+}p_{-}c(\Delta _{2}^{(p)}E_{-}+\Delta _{1}^{(p)}p_{-}c)\\&+2\hbar ^{2}\omega ^{2}p_{-}m^{2}c^{3}(\Delta _{2}^{(p)}E_{-}+\Delta _{1}^{(p)}p_{-}c){\Big ]}{\Big [}(E_{+}-cp_{+}\cos \Theta _{+})((\Delta _{2}^{(p)}E_{-}+\Delta _{1}^{(p)}p_{-}c)^{2}+4m^{2}c^{4}p_{+}^{2}p_{-}^{2}\sin ^{2}\Theta _{+}){\Big ]}^{-1}\\&+\left.{\frac {4E_{+}^{2}p_{-}^{2}(2(\Delta _{2}^{(p)}E_{-}+\Delta _{1}^{(p)}p_{-}c)^{2}-4m^{2}c^{4}p_{+}^{2}p_{-}^{2}\sin ^{2}\Theta _{+})(\Delta _{1}^{(p)}E_{-}+\Delta _{2}^{(p)}p_{-}c)}{((\Delta _{2}^{(p)}E_{-}+\Delta _{1}^{(p)}p_{-}c)^{2}+4m^{2}c^{4}p_{+}^{2}p_{-}^{2}\sin ^{2}\Theta _{+})^{2}}}\right],\\I_{4}&={\frac {4\pi Ap_{-}c(\Delta _{2}^{(p)}E_{-}+\Delta _{1}^{(p)}p_{-}c)}{(\Delta _{2}^{(p)}E_{-}+\Delta _{1}^{(p)}p_{-}c)^{2}+4m^{2}c^{4}p_{+}^{2}p_{-}^{2}\sin ^{2}\Theta _{+}}}+{\frac {16\pi E_{+}^{2}p_{-}^{2}A(\Delta _{2}^{(p)}E_{-}+\Delta _{1}^{(p)}p_{-}c)^{2}}{((\Delta _{2}^{(p)}E_{-}+\Delta _{1}^{(p)}p_{-}c)^{2}+4m^{2}c^{4}p_{+}^{2}p_{-}^{2}\sin ^{2}\Theta _{+})^{2}}},\\I_{5}&={\frac {4\pi A}{(-(\Delta _{2}^{(p)})^{2}+(\Delta _{1}^{(p)})^{2}-4p_{+}^{2}p_{-}^{2}\sin ^{2}\Theta _{+})((\Delta _{2}^{(p)}E_{-}+\Delta _{1}^{(p)}p_{-}c)^{2}+4m^{2}c^{4}p_{+}^{2}p_{-}^{2}\sin ^{2}\Theta _{+})}}\\&\times \left[{\frac {\hbar ^{2}\omega ^{2}p_{-}^{2}}{E_{+}cp_{+}\cos \Theta _{+}}}{\Big [}E_{-}[2(\Delta _{2}^{(p)})^{2}((\Delta _{2}^{(p)})^{2}-(\Delta _{1}^{(p)})^{2})+8p_{+}^{2}p_{-}^{2}\sin ^{2}\Theta _{+}((\Delta _{2}^{(p)})^{2}+(\Delta _{1}^{(p)})^{2})]\right.\\&+p_{-}c[2\Delta _{1}^{(p)}\Delta _{2}^{(p)}((\Delta _{2}^{(p)})^{2}-(\Delta _{1}^{(p)})^{2})+16\Delta _{1}^{(p)}\Delta _{2}^{(p)}p_{+}^{2}p_{-}^{2}\sin ^{2}\Theta _{+}]{\Big ]}{\Big [}(\Delta _{2}^{(p)})^{2}+4p_{+}^{2}p_{-}^{2}\sin ^{2}\Theta _{+}{\Big ]}^{-1}\\&+{\frac {2\hbar ^{2}\omega ^{2}p_{+}^{2}\sin ^{2}\Theta _{+}(2\Delta _{1}^{(p)}\Delta _{2}^{(p)}p_{-}c+2(\Delta _{2}^{(p)})^{2}E_{-}+8p_{+}^{2}p_{-}^{2}\sin ^{2}\Theta _{+}E_{-})}{E_{+}-cp_{+}\cos \Theta _{+}}}\\&-{\Big [}2E_{+}^{2}p_{-}^{2}\{2((\Delta _{2}^{(p)})^{2}-(\Delta _{1}^{(p)})^{2})(\Delta _{2}^{(p)}E_{-}+\Delta _{1}^{(p)}p_{-}c)^{2}+8p_{+}^{2}p_{-}^{2}\sin ^{2}\Theta _{+}[((\Delta _{1}^{(p)})^{2}+(\Delta _{2}^{(p)})^{2})(E_{-}^{2}+p_{-}^{2}c^{2})\\&+4\Delta _{1}^{(p)}\Delta _{2}^{(p)}E_{-}p_{-}c]\}{\Big ]}{\Big [}(\Delta _{2}^{(p)}E_{-}+\Delta _{1}^{(p)}p_{-}c)^{2}+4m^{2}c^{4}p_{+}^{2}p_{-}^{2}\sin ^{2}\Theta _{+}{\Big ]}^{-1}\\&-\left.{\frac {8p_{+}^{2}p_{-}^{2}\sin ^{2}\Theta _{+}(E_{+}^{2}+E_{-}^{2})(\Delta _{2}^{(p)}p_{-}c+\Delta _{1}^{(p)}E_{-})}{E_{+}-cp_{+}\cos \Theta _{+}}}\right],\\I_{6}&=-{\frac {16\pi E_{-}^{2}p_{+}^{2}\sin ^{2}\Theta _{+}A}{(E_{+}-cp_{+}\cos \Theta _{+})^{2}(-(\Delta _{2}^{(p)})^{2}+(\Delta _{1}^{(p)})^{2}-4p_{+}^{2}p_{-}^{2}\sin ^{2}\Theta _{+})}}\end{aligned}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/89082d84daae3b60c3793714c522e974deaa7739)
и

Овој напречен пресек може да се искорити во Монте Карло симулации. Анализата на овој израз покажува дека позитроните се главно оддадени во насока на упадниот фотон.