സമഭുജത്രികോണം

From Wikipedia, the free encyclopedia

സമഭുജത്രികോണം
Remove ads

മൂന്നു വശങ്ങളും മൂന്നു കോണളവുകളും തുല്യമായ ത്രികോണങ്ങളാണ് സമഭുജ ത്രികോണങ്ങൾ. ആയതിനാൽ ഓരോ കോണളവും 60 ഡിഗ്രീ വീതമായിരിയ്ക്കും.

വസ്തുതകൾ സമഭുജത്രികോണം ...
വസ്തുതകൾ സമഭുജത്രികോണം ...
Thumb
സമഭുജ ത്രികോണം

ഒരു വശം യും ലംബശീർ‌ഷം ഉം തന്നിരുന്നാൽ സമഭുജത്രികോണത്തിന്റെ വിസ്തീർ‌ണ്ണം കാണുന്നതിന് എന്ന സൂത്രവാക്യം ഉപയോഗിയ്ക്കുന്നു.

വശമായുള്ള സമഭുജത്രികോണം ആധാരമാക്കി വരയ്ക്കുന്ന:

    • ചുറ്റളവ്
    • പരിവൃത്തത്തിന്റെ ആരം
    • ആന്തരവൃത്തത്തിന്റെ ആരം or
    • പരിവൃത്തത്തിന്റെ കേന്ദ്രവും ആന്തര വൃത്തത്തിന്റെ കേന്ദ്രവും ത്രികോണത്തിന്റെ ജ്യാമിതീയ കേന്ദ്രവും ഒന്നു തന്നെ ആയിരിക്കും. 
    • ഏതു വശത്തു നിന്നുമുള്ള ഉയരം, പരിവൃത്തത്തിന്റെ ആരം R, ആണെങ്കിൽത്രികോണമിതി ഉപയോഗിച്ച്,
    • ത്രികോണത്തിന്റെ വിസ്തീർണ്ണം പല പരിമാണങ്ങൾക്കും ശീർഷത്തിൽ നിന്നും എതിർവാശത്തേക്കുള്ള ഉന്നതി ("h") ന് ബന്ധങ്ങളുണ്ട്:
    • വിസ്തീർണ്ണം  
    • ഓരോ വശത്തുനിന്നും കേന്ദ്രത്തിലേക്കുള്ള അകലം  
    • പരിവൃത്തത്തിന്റെ ആരം 
    • ആന്ത്ര വൃത്തത്തിന്റെ ആരം    ഒരു സമഭുജ ത്രികോണത്തിൽ, ഉന്നതി, കോണിന്റെ സമഭാജികൾ, ലംബസമഭാജികൾ, മാധ്യമം എന്നിവ ഒന്നായിരിക്കും.
  • == സവിശേഷതകൾ == ABC എന്ന ത്രികോണത്തിന്റെ വശങ്ങൾ a, b, c, അർദ്ധചുറ്റളവ് s, വിസ്തീർണ്ണം T, പരിവൃത്തത്തിന്റെ ആരങ്ങൾ ra, rb, rc (തൊടുവര യഥാക്രമം a, b, c ), പരിവൃത്തത്തിൻടേയും ആന്ത്രവൃത്തത്തിൻടേയും ആരങ്ങൾ യഥാക്രമം R and rആവുംപ്പോൾ, സമഭുജമാവണമെങ്കിൽ താഴെ പറയുന്ന ഒമ്പത് ഇനങ്ങളിൽ ഒന്നെങ്കിലും ശരിയാവണം. ഈ വിശേഷതകൾ സമഭുജത്രികോണത്തിന്റെ മാത്രം പ്രത്യേകതയാണ്. 
Remove ads

നിർ‌മ്മിതി

Thumb
സമഭുജ ത്രികോണത്തിന്റെ നിർമ്മിതി

ആരമായുള്ള ഒരു വൃത്തം നിർ‌മിയ്ക്കുക. ഇതേ ആരത്തിൽ തന്നെ കോം‌പസ്സുപയോഗിച്ച് വേറൊരു വൃത്തം നിർമ്മിച്ച്, വൃത്തകേന്ദ്രങ്ങളേയും വൃത്തങ്ങൾ തമ്മിൽ സന്ധിയ്ക്കുന്ന ബിന്ദുക്കളേയും യോജിപ്പിച്ചാൽ സമഭുജത്രികോണം ലഭിയ്ക്കും.


Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads