ഇൻഫ്രാറെഡ് തരംഗം

From Wikipedia, the free encyclopedia

ഇൻഫ്രാറെഡ് തരംഗം
Remove ads
Remove ads

ദൃശ്യ പ്രകാശ തരംഗങ്ങളേക്കാൾ കൂടുതലുള്ളതും മൈക്രോ തരംഗങ്ങളേക്കാൾ കുറവും തരംഗദൈർഘ്യം ഉള്ള വിദ്യുത്കാന്തിക തരംഗങ്ങളെയാണ് ഇൻഫ്രാറെഡ് തരംഗങ്ങൾ എന്നു പറയുന്നത്. പൊതുവേ 700 നാനോമീറ്റർ മുതൽ 300 മൈക്രോമീറ്റർ വരെ തരംഗദൈർഘ്യം ഉള്ള വിദ്യുത്കാന്തികതരംഗങ്ങളെ ഇൻഫ്രാറെഡ് വിഭാഗത്തിൽ പെടുന്നതായി പരിഗണിച്ചിരിക്കുന്നു. ഇൻഫ്രാറെഡ് തരംഗങ്ങൾ മനുഷ്യനേത്രങ്ങൾക്കു് നേരിട്ട് കാണാൻ കഴിയുകയില്ലെങ്കിലും അവയുടെ ഉയർന്ന സാന്നിദ്ധ്യം ചൂട് എന്ന നിലയിൽ അനുഭവവേദ്യമാണു്.) സാധാരണ വികിരണം വഴി ഉണ്ടാവുന്ന താപസഞ്ചരണത്തിൽ ഏകദേശം പകുതിയും ഇൻഫ്രാറെഡ് തരംഗങ്ങളിലൂടെയാണു് സംഭവിക്കുന്നതു്. (എന്നാൽ ഇൻഫ്രാറെഡ് തരംഗങ്ങളിലൂടെ മാത്രമല്ല, ദൃശ്യപ്രകാശം അടക്കമുള്ള മറ്റുതരംഗദൈർഘ്യങ്ങളിലും താപവികിരണം സംഭവിക്കുന്നുണ്ടു്.[1]

Thumb
ദൈർഘ്യമേറിയ തരംഗദൈർഘ്യമുള്ള ഇൻഫ്രാറെഡ് (ബോഡി-ടെമ്പറേച്ചർ തെർമൽ) വെളിച്ചത്തിൽ എടുത്ത രണ്ട് ആളുകളുടെ ഒരു സ്യൂഡോകോളർ ചിത്രം.
Thumb
ഈ ഇൻഫ്രാറെഡ് ബഹിരാകാശ ദൂരദർശിനി ചിത്രത്തിന് യഥാക്രമം 3.4, 4.6, 12 μm തരംഗദൈർഘ്യങ്ങൾക്ക് സമാനമായ നീല, പച്ച, ചുവപ്പ് നിറങ്ങളുണ്ട്.
Remove ads

പദോൽ‌പ്പത്തി

മനുഷ്യനേത്രത്തിനു ഗോചരമായ പ്രകാശവീചികളിൽ ഏറ്റവും കൂടിയ തരംഗദൈർഘ്യമുള്ളതു് (ഏറ്റവും കുറഞ്ഞ ആവൃത്തിയുള്ളതു്) ചുവപ്പ് പ്രകാശത്തിനാണു്. അതിനും തൊട്ടുതാഴെ (ലത്തീൻ:ഇൻഫ്രാ = താഴെ) ആവൃത്തിയുള്ള തരംഗങ്ങൾ എന്ന അർത്ഥത്തിൽ ഈ തരംഗങ്ങളെ ഇൻഫ്രാറെഡ് തരംഗങ്ങൾ എന്നു വിളിക്കുന്നു.)

ഇൻഫ്രാറെഡ് ഉപവിഭാഗങ്ങൾ

മൊത്തം ഇൻഫ്രാറെഡ് തരംഗങ്ങൾക്ക് വിശാലമായ ഒരു തരംഗമേഖലയാണുള്ളതു്. 700x10-9മീറ്റർ മുതൽ 300x10-6 മീറ്റർ വരെ ഏകദേശം മൂന്നു ദശാങ്കങ്ങളിൽ (order of magnitude) അവയുടെ തരംഗസീമ വ്യാപിച്ചുകിടക്കുന്നു. പല ഉപകരണങ്ങളിലും സങ്കേതങ്ങളിലും ഒരു നിശ്ചിത ദൈർഘ്യപരിധിയ്ക്കുള്ളിൽ വരുന്ന തരംഗങ്ങൾക്കു മാത്രമേ പ്രസക്തിയുള്ളൂ. അതിനാൽ മാപനസൌകര്യവും ഉപയുക്തതയും അനുസരിച്ച് ഇൻഫ്രാറെഡ് തരംഗങ്ങളെ പല ഉപവിഭാഗങ്ങളായി കണക്കാക്കിയിട്ടുണ്ടു്.

സി.ഐ.ഇ. വിഭജനരീതിയിൽ (CIE Classification scheme)

അന്താരാഷ്ട്ര ദീപപ്രകാശന സമിതി (CIE - International Commission on Illumination) നിർദ്ദേശിച്ചിരിക്കുന്ന രീതി അനുസരിച്ച് ഇൻഫ്രാറെഡ് കിരണങ്ങളെ മൂന്നു വിഭാഗങ്ങളായി പരിഗണിക്കാം:[2]

  • ഐ.ആർ.- എ (700 നാനോമീറ്റർ മുതൽ 1400 നാനോമീറ്റർ വരെ)
  • ഐ.ആർ.- ബി(1400 നാനോമീറ്റർ മുതൽ 3000 നാനോമീറ്റർ വരെ)
  • ഐ.ആർ.- സി (3000 നാനോമീറ്റർ മുതൽ 1 മില്ലീമീറ്റർ വരെ)

ഇതിനോടു സാമ്യമുള്ള, സാധാരണയായി പ്രചാരത്തിലിരിക്കുന്ന മറ്റൊരു വിഭജനരീതി ഇങ്ങനെയാണു്:


  • സമീപ-ഇൻഫ്രാറെഡ് (NIR - Near Infrared, IR-A DIN)): 0.75-1.40 µm

ജലത്തിന്റെ ഊർജ്ജആഗിരണശേഷി അടിസ്ഥാനമാക്കി, സിലിക്കാ ഗ്ലാസ്സിൽ ആഗിരണ ഊജ്ജനഷ്ടം വളരെ കുറവുള്ള ഇത്തരം തരംഗങ്ങൾ ഫൈബർ ഓപ്റ്റിൿ മാദ്ധ്യമങ്ങളിൽ വ്യാപകമായി ഉപയോഗിക്കപ്പെടുന്നു. നിശാഗോചരകണ്ണാടകൾ തുടങ്ങിയ ഉപകരണങ്ങളിലും ഇവയ്ക്കു് പ്രാധാന്യമുണ്ടു്.

  • ഹ്രസ്വ-ഇൻഫ്രാറെഡ് (SWIR - Short Wavelength Infrared, IR-B DIN): 1.4-3 µm

ഏകദേശം 1.4 µm നു മുകളിൽ തരംഗദൈർഘ്യമുള്ള കിരണങ്ങളിൽനിന്നും ജലത്തിനുള്ള ഊർജ്ജആഗിരണശേഷി ഗണ്യമായി വർദ്ധിക്കുന്നു. അതിനാൽ ഇവയെ മറ്റൊരു വിഭാഗമായി കണക്കാക്കുന്നു. 1530 നാനോമീറ്റർ മുതൽ 1560 നാനോമീറ്റർ വരെയുള്ള തരംഗങ്ങൾ അതിദൂരവിനിമയസങ്കേതങ്ങളിൽ വ്യാപകമായി ഉപയോഗിച്ചുവരുന്നു.

  • മദ്ധ്യ-ഇൻഫ്രാറെഡ് (MWIR - Mid Wavelength Infrared, IR-C DIN): 3-15µm

ജെറ്റ് വിമാനങ്ങളുടെ പുകച്ചുരുൾ തുടങ്ങിയ ലക്ഷ്യങ്ങൾ കണ്ടെത്തി നശിപ്പിക്കുവാനുതകുന്ന സ്വയംഗതിനിയന്ത്രിതമിസൈലുകളിലും മറ്റും ‘താപാന്വേഷി’കളായി ഉപയോഗിക്കുന്നതു് ഇത്തരം തരംഗങ്ങളോടു് പ്രതികരിക്കുന്ന വേദിനികൾ (sensors) ആണു്.

  • ദീർഘ-ഇൻഫ്രാറെഡ് (LWIR - Long Wavelength Infrared, IR-C DIN): 8-15µm

താപവിതരണം അടിസ്ഥാനമാക്കി ഛായാചിത്രം എടുക്കുവാൻ ഈ വിഭാഗത്തിലുള്ള ഇമേജ് സെൻസറുകൾ ഉപയോഗിക്കുന്നു.

  • വിദൂര-ഇൻഫ്രാറെഡ് (FIR - Far Infrared): 15-1000 µm

ഇവയിൽ, NIR, SWIR എന്നിവയെ ‘പ്രതിഫലിത ഇൻഫ്രാറെഡ്’ എന്നും MWIR, LWIR എന്നിവയെ താപീയഇൻഫ്രാറെഡ് എന്നും തരം തിരിക്കാറുണ്ടു്. ഉപയോഗിക്കുന്ന സെൻസറുകളുടെ വ്യത്യാസമനുസരിച്ച് വിവിധ താപനിലകളിലുള്ള വസ്തുക്കളിൽ നിന്നുള്ള പ്രതിബിംബവും ഈ തരംഗങ്ങളുടെ ദൈർഘ്യസ്വഭാവമനുസരിച്ച് വ്യത്യാസപ്പെടാം.

ജ്യോതിശാസ്ത്രസംബന്ധമായി ( Astrological scheme)


വേദിനി പ്രതികരണമനുസരിച്ചു് (Sensor response scheme)

ആശയവിനിമയസങ്കേതമനുസരിച്ച്

സ്രോതസ്സ്, സഞ്ചരണമാദ്ധ്യമം, വേദിനികൾ എന്നിവയുടെ സ്വഭാവമനുസരിച്ചു് ഇൻഫ്രാറെഡ് വീചികളെ ഇങ്ങനെ തരം തിരിച്ചിരിക്കുന്നു:[3]

കൂടുതൽ വിവരങ്ങൾ ബാൻഡ്, പേരു് ...


Remove ads

ജ്യോതിശാസ്ത്രവും ഇൻഫ്രാറെഡ് തരംഗങ്ങളും

അന്തരീക്ഷത്തിലെ നീരാവി ഇൻഫ്രാറെഡ് തരംഗങ്ങളെ മിക്കവാറും ആഗിരണം ചെയ്യും. അതിനാൽ ഭൂമിയിൽ നിന്നു ഇൻഫ്രാറെഡ് തരംഗങ്ങളെ നിരീക്ഷിക്കുവാൻ സാധ്യമല്ല. അതിനാൽ ഈ തരംഗങ്ങളെ നിരീക്ഷിക്കുവാനുള്ള ഏറ്റവും എളുപ്പമുള്ള മാർഗ്ഗം ഭൂമിയെ ചുറ്റിയുള്ള ഒരു ഭ്രമണപഥത്തിൽ ഒരു ഇൻഫ്രാറെഡ് ദൂരദർശിനി വയ്ക്കുക എന്നതാണ്. 1983-ൽ നാസ ചെയ്തത് അതാണു. ആ വർഷം നാസ Infrared Astronomical Satellite (IRAS) എന്ന ഒരു ബഹിരാകാശ ഇൻഫ്രാറെഡ് ദൂരദർശിനി ഭൂമിയിൽ നിന്നു 900 കിമി ഉയരത്തിലുള്ള ഒരു ഭ്രമണപഥത്തിൽ സ്ഥാപിച്ചു. ഏതാണ്ട് പത്തു മാസം നീണ്ട നിരീക്ഷണത്തിൽ ഇൻഫ്രാറെഡ് തരംഗദൈർഘ്യത്തിലുള്ള അനേകം ചിത്രങ്ങൾ IRAS ഭൂമിയേക്ക് അയച്ചു. ജ്യോതിശാസ്ത്രജ്ഞന്മാർ ആദ്യമായി സൗരയൂഥത്തിലെ പൊടിപടലങ്ങളും സമീപനക്ഷത്രങ്ങളെ ചുറ്റിയുള്ള പൊടിപടലങ്ങളുടെ വലയത്തേയും കണ്ടു. ഈ പൊടിപടലങ്ങളുടെ താപനില വളരെ കുറവായതിനാൽ ദൃശ്യപ്രകാശ തരംഗങ്ങൾ ഇതിൽ നിന്നും വികിരണം ചെയ്യുന്നുണ്ടായിരുന്നില്ല. അതിനാൽ തന്നെ ദൃശ്യപ്രകാശ ദൂരദർശിനികൾക്ക് ഇവയെ കണ്ടെത്താൻ കഴിയുമായിരുന്നില്ല.

പ്രയോജനങ്ങൾ, ഉപകരണങ്ങൾ

  1. ഇൻഫ്രാറെഡ് ഫിൽട്ടറുകൾ
  2. നിശാദർശിനികൾ
  3. താപച്ഛായാഗ്രഹണം
  4. അനുധാവനം (ട്രാക്കിങ്ങ്)
  5. താപനം
  6. ആശയവിനിമയം
  7. സ്പെക്ട്രോസ്കോപ്പി
  8. കാലാവസ്ഥാശാസ്ത്രം
  9. ജ്യോതിശാസ്ത്രം
  10. കലാചരിത്രം
  11. ജീവശാസ്ത്രം
  12. വൈദ്യശാസ്ത്രം -(ഫോട്ടോ ബയോ മോഡുലേഷൻ)

അവലംബം

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads