സദിശം (ജ്യാമിതി)

പരിമാണവും ദിശയുമുള്ള ഒരു ജ്യാമിതീയവസ്തു From Wikipedia, the free encyclopedia

സദിശം (ജ്യാമിതി)
Remove ads

മൗലിക ഗണിതശാസ്ത്രത്തിലും ഭൗതികശാസ്ത്രത്തിലും സദിശം (Vector) എന്നത് പരിമാണവും ദിശയുമുള്ള ഒരു ജ്യാമിതീയവസ്തുവാണ്. ഒരു സദിശത്തെ ദിശയുള്ള രേഖ കൊണ്ട് സൂചിപ്പിക്കുന്നു. ഇതിനു ഒരു ആരംഭബിന്ദുവും അവസാനബിന്ദുവും ഉണ്ടായിരിക്കും. Aആരംഭബിന്ദുവും B അവസാനബിന്ദുവുമായ ഒരു സദിശത്തെ ഇപ്രകാരം സൂചിപ്പിക്കാം.

Thumb
A യിൽ നിന്നും Bയിലേക്കുള്ള ഒരു സദിശം.

സദിശത്തിന്റെ പരിമാണം(Magnitude) രേഖയുടെ നീളമാണ്.

വാസ്തവികസംഖ്യകളിലെ പല ബീജീയസംക്രിയകളും സദിശങ്ങളിലെ സംക്രിയകളോട് സമാനമാണ്. സദിശങ്ങൾ കൂട്ടുകയോ കുറക്കുകയോ ഗുണിക്കുകയോ വിപരീതദിശയിലേക്ക് തിരിക്കുകയോ ചെയ്യാം. സംക്രിയകൾ ക്രമനിയമം, സാഹചര്യനിയമം, വിതരണനിയമം ഇവയെല്ലാം പാലിക്കുന്നു. സാമാന്തരികനിയമം ഉപയോഗിച്ച് ഒരേ ആരംഭബിന്ദുവുള്ള രണ്ട് സദിശങ്ങളുടെ തുക കണ്ടെത്താവുന്നതാണ്. ധനസംഖ്യകൊണ്ടുള്ള ഗുണനം അതായത് അദിശം കൊണ്ടുള്ള ഗുണനം പരിമാണത്തിൽ മാറ്റം വരുത്തുന്നു. ദിശക്ക് മാറ്റം വരാതെ നീളം കൂടുകയോ കുറയുകയോ ചെയ്യാം. ഋണസംഖ്യകൾ കൊണ്ടുള്ള ഗുണനം ദിശക്ക് മാറ്റം വരുത്തുന്നു.

നിർദ്ദേശാങ്ക ജ്യാമിതി ഉപയോഗിച്ച് സദിശങ്ങളേയും സംക്രിയകളേയും വിവരിക്കാവുന്നതാണ്.

Remove ads

ഗണിത നിറ്വചനം

നിർദ്ദേശാങ്കങ്ങൾ മാറ്റുമ്പോൾ സ്ഥാനാന്തരത്തെപ്പോലെ മാറുന്ന 3 അംഗങ്ങളുള്ള ഏതു ഗണത്തെയും സദിശം എന്നു പറയാം. സ്ഥാനാന്തരം സദിശങ്ങളുടെ അടിസ്ഥാന മാതൃക ആൺ. അതായത്

ആകുന്ന ഏതു യും സദിശമാൺ. ഇവിടെ എന്നതു transformation matrix ആണ്. ഉദാഹരണത്തിന്‌ rotation.

Remove ads

അവലംബം

  1. David J. Griffiths, Introduction to Electrodynamics, ഒന്നാമത്തെ അദ്ധ്യായം.


Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads