Deler
wiskundig begrip / Uit Wikipedia, de vrije encyclopedie
Een geheel getal is een deler of factor van een geheel getal
, als er een geheel getal
bestaat waarvoor geldt dat
. De bewering dat
een deler van
is, dat
door
kan worden gedeeld, wordt in de wiskunde meestal genoteerd als
.
Een paar voorbeelden:
- 2 is een deler van 8 (ofwel 2 | 8 ), want 2 × 4 = 8.
- 3 is geen deler van 8, omdat er geen enkel geheel getal
is zo dat
.
- Voor elk geheel getal
geldt
, omdat
.
- Voor geen enkel geheel getal
verschillend van 0 geldt
, omdat er geen
is met
.
- Volgens deze definitie is 0 | 0 omdat 0 × 0 = 0.
- Voor elk positief geheel getal
geldt dat
en dat
, omdat
.
Een andere manier om aan te geven dat door
kan worden gedeeld, is door te zeggen dat bij deling van
door
er geen rest overblijft:
mod
= 0.
Als en
een priemgetal is, dan noemen we
ook wel een priemfactor van
.
Als twee verschillende gehele getallen en
allebei een deler
hebben, dan heet
een gemene of gemeenschappelijke deler van
en
. De grootste gemene deler van
en
wordt genoteerd als
.