cover image

Hausdorff-ruimte

Uit Wikipedia, de vrije encyclopedie

In de topologie en andere deelgebieden van de wiskunde is een hausdorff-ruimte een topologische ruimte waarin voor elk tweetal verschillende punten disjuncte omgevingen bestaan. Andere termen voor een hausdorff-ruimte zijn gescheiden ruimte of -ruimte, terwijl men ook wel zegt dat een dergelijke ruimte de hausdorff-eigenschap heeft. Van de vele scheidingsaxioma's die aan een topologische ruimte kunnen worden opgelegd, is de "hausdorff-eigenschap" (-ruimte) de meest gebruikte. Het impliceert de eenduidigheid van limieten van rijen, netten en filters. Intuïtief gesproken is een ruimte een hausdorff-ruimte, wanneer elk tweetal verschillende punten van elkaar kunnen gescheiden door open verzamelingen. Hausdorff-ruimten zijn genoemd naar de Duitse wiskundige Felix Hausdorff, een van de grondvesters van de topologie. Hausdorffs oorspronkelijke definitie van een topologische ruimte (uit 1914) omvatte de hausdorff-eigenschap als een axioma.

Hausdorff_space.svg
De punten en gescheiden door hun respectievelijke omgevingen en

Oops something went wrong: