Top Qs
Tijdlijn
Chat
Perspectief

Gelijkheid van Parseval

Van Wikipedia, de vrije encyclopedie

Remove ads

In de functionaalanalyse is de gelijkheid van Parseval, genoemd naar de Franse wiskundige Marc-Antoine Parseval, voor ruimten met een inproduct de generalisatie van de stelling van Pythagoras. De formule vindt vooral toepassing bij de orthogonale ontbinding in componenten, in het bijzonder bij Fouriertransformaties.

Gelijkheid

Laat een lineaire ruimte met inproduct zijn en een orthonormale basis daarin, dan geldt voor elke de gelijkheid van Parseval:

Omgekeerd geldt dat een willekeurig orthonormaal stelsel slechts dan een basis is, als de gelijkheid van Parseval geldt.

Remove ads

Toepassing

Samenvatten
Perspectief

De gelijkheid van Parseval is geldig voor kwadratisch integreerbare functies. Voor de Fourierreeks

met coëfficiënten

luidt de gelijkheid van Parseval:

waarbij het linkerlid ook de energie van de functie f(x) genoemd wordt.

Remove ads

Zie ook

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads