Loading AI tools
een algebraïsche structuur die bestaat uit een verzameling 𝐺 en een binaire operatie die aan twee elementen van 𝐺 weer een element van 𝐺 toevoegt Van Wikipedia, de vrije encyclopedie
In de groepentheorie, een deelgebied van de wiskunde, is een groep een algebraïsche structuur die bestaat uit een verzameling en een binaire operatie, de groepsbewerking, die aan twee elementen van weer een element van toevoegt. De verzameling en de groepsbewerking moeten voldoen aan enkele voorwaarden, de groepsaxioma's. Er zijn er vier: de groepsbewerking is gesloten en associatief, er is in de groep een neutraal element voor de groepsbewerking, de identiteit, en ieder element in de groep heeft een invers element. Een voorbeeld van een groep vormen de gehele getallen met optellen als operatie.
De axioma's gelden voor alle groepen, maar groepen onderling kunnen heel verschillend zijn. Zij vormen het onderwerp van de groepentheorie. Met groepen kunnen de structurele aspecten van objecten van uiteenlopende oorsprong op uniforme wijze worden bestudeerd. De alomtegenwoordigheid van de groepen op tal van gebieden, zowel binnen als buiten de wiskunde, maakt van groepen een centraal ordenend principe binnen de hedendaagse wiskunde.[1][2]
Groepen delen een fundamentele verwantschap met het begrip symmetrie. Een symmetriegroep beschrijft symmetrie-eigenschappen van een meetkundig object, dus bestaat uit de verzameling van transformaties die het object ongewijzigd laten met daarbij als operatie het na elkaar uitvoeren van twee van zulke transformaties. Zulke symmetriegroepen, in het bijzonder de continue lie-groepen, spelen een belangrijke rol in tal van academische disciplines. Matrixgroepen worden bijvoorbeeld gebruikt om symmetrieën in de moleculaire scheikunde en symmetrie in de natuurkunde, zoals de natuurwetten die ten grondslag liggen aan de speciale relativiteitstheorie, te begrijpen.
De studie van vergelijkingen heeft aan de basis van de groepentheorie gestaan. Évariste Galois was in de jaren 1830 een van de wiskundigen die hieraan rekenden. De theorie die het verband legt tussen polynomen en groepen, is naar hem genoemd. Na bijdragen vanuit andere gebieden, zoals de getaltheorie en de meetkunde, kreeg het begrip groep in de wiskunde zijn algemene vorm, en kreeg de groepentheorie rond 1870 een stevige basis. Om groepen te onderzoeken hebben wiskundigen verschillende begrippen gedefinieerd die het mogelijk maken om groepen op te breken in kleinere, beter begrijpelijke stukken, zoals ondergroepen, factorgroepen en enkelvoudige groepen. Naast de abstracte eigenschappen van groepen bestuderen groepstheoretici ook de verschillende manieren waarop een groep concreet kan worden uitgedrukt, haar groepsrepresentatie, zowel vanuit een theoretisch als een computationeel standpunt. Er heeft zich een bijzondere rijke theorie van de eindige groepen ontwikkeld, die culmineerde in de classificatie van eindige enkelvoudige groepen, die werd voltooid in 1983. Sinds het midden van de jaren 1980 is de meetkundige groepentheorie, die eindig gegenereerde groepen als meetkundige objecten bestudeert, uitgegroeid tot een bijzonder actief onderzoeksgebied binnen de groepentheorie.
Algebraïsche structuur | ||
---|---|---|
Groep · Halfgroep · Ideaal · Lichaam/veld · Magma · Monoïde · Ring |
Het moderne concept van een abstracte groep ontwikkelde zich uit verschillende deelgebieden van de wiskunde[3][4][5]. De oorspronkelijke motivatie voor de groepentheorie was de zoektocht naar oplossingen van polynomiale vergelijkingen van graad 5 en hoger. De 19e-eeuwse Franse wiskundige Évariste Galois, die voortbouwde op eerder werk van Paolo Ruffini en Joseph-Louis Lagrange, gaf een criterium voor de oplosbaarheid van bepaalde veeltermvergelijkingen in termen van symmetriegroepen van zijn wortels (oplossingen). De elementen van een dergelijke Galoisgroep komen overeen met bepaalde permutaties van de wortels. Aanvankelijk werden Galois zijn ideeën verworpen door zijn tijdgenoten en zijn werken werden pas voor het eerst ruim vijftien jaar na zijn vroege dood gepubliceerd[6][7]. Meer algemene permutatiegroepen werden met name onderzocht door Augustin Louis Cauchy. Arthur Cayleys On the theory of groups, as depending on the symbolic equation θn = 1 (Over de groepentheorie, afhankelijk van de symbolische vergelijking θn = 1) (1854) geeft de eerste abstracte definitie van een eindige groep[8].
De meetkunde was een tweede terrein, waarop systematisch groepen werden gebruikt, vooral symmetriegroepen, als onderdeel van Felix Kleins Erlanger Programm uit 1872[9]. Nadat "nieuwe meetkunden", zoals de hyperbolische- en de projectieve meetkunde waren ontstaan, gebruikte Klein de groepentheorie om deze "nieuwe meetkunden" op een meer coherente manier te organiseren. Deze ideeën verder bevorderend, legde Sophus Lie in 1884 het fundament voor de studie van de naar hem genoemde Lie-groepen[10]
Het derde veld dat bijdroeg aan de groepentheorie was de getaltheorie. Van bepaalde abelse groep structuren werd reeds impliciet gebruikgemaakt in Carl Friedrich Gauss' Disquisitiones Arithmeticae uit 1798 en meer expliciet door Leopold Kronecker[11]. In 1847 leidde Ernst Kummer vroege pogingen om de laatste stelling van Fermat te bewijzen naar een climax door de ontwikkeling van groepen die factorisatie in priemgetallen beschreven.[12]
De convergentie van deze verschillende bronnen in een uniforme groepentheorie begon in 1870 met Camille Jordans Traité des substitutions et des équations algébriques[13]. Walther von Dyck (1882) stelde als eerste een moderne definitie van een abstracte groep[14] op. Vanaf het begin van de 20e eeuw, verkregen groepen een brede erkenning door het baanbrekende werk van Ferdinand Georg Frobenius en William Burnside, die werkte op het gebied van de representatietheorie van eindige groepen, Richard Brauers modulaire representatietheorie en de artikelen van Issai Schur[15] De theorie van de Lie-groepen, en meer in het algemeen de lokaal compacte groepen werd gepropageerd door Hermann Weyl, Élie Cartan en vele anderen[16]. Haar algebraïsche tegenhanger, de theorie van de algebraïsche groepen, werd vanaf de late jaren dertig voor het eerst door Claude Chevalley vormgegeven en later voortgezet met belangrijk werk van Armand Borel en Jacques Tits[17].
Het door de Universiteit van Chicago in het academisch jaar 1960-61 georganiseerde "Groepentheoriejaar" bracht een aantal vooraanstaande groepentheoretici, zoals Daniel Gorenstein, John Griggs Thompson en Walter Feit bij elkaar. Hierdoor werd het fundament van een samenwerking gelegd die, met inbreng van vele andere wiskundigen, in 1982 tot de classificatie van alle eindige enkelvoudige groepen zou leiden. Dit project overtrof alle vorige wiskundige inspanningen door zijn enorme omvang, zowel wat betreft de lengte van het bewijs als door het aantal onderzoekers. Er is nog steeds onderzoek gaande om het bewijs van deze classificatie te vereenvoudigen[18]. Deze dagen is de groepentheorie nog steeds een zeer actief deelgebied van de wiskunde met een cruciale invloed op vele andere takken van de wiskunde.
Een groep wordt gevormd door een niet-lege verzameling met een associatieve binaire operatie , een voor de bewerking neutraal element en bij elk element een voor de bewerking invers element .
Uitgebreider geformuleerd:
Een groep is een verzameling , samen met een operatie die aan elke twee elementen en een element toevoegt. Het is gebruikelijk te noteren als . Het symbool is een algemene plaatshouder voor een concreet gegeven operatie, zoals de optelling hierboven. De verzameling en de operatie moeten voldoen aan vier eisen die samen bekendstaan als de groepsaxioma's:[19]
Merk op dat een groep niet noodzakelijk commutatief hoeft te zijn. Het is niet noodzakelijk dat voor alle geldt dat . Als dit wel het geval is spreekt men van een commutatieve of abelse groep, genoemd naar de wiskundige Niels Abel.
Verder wordt er onderscheid gemaakt tussen eindige en oneindige groepen.
Een van de bekendste groepen is de verzameling van gehele getallen , die bestaat uit de getallen
De optelling van de gehele getallen heeft de volgende eigenschappen, die dienen als een model voor de abstracte groepsaxioma's die in de onderstaande definitie worden gegeven.
De groep van alle permutaties van een rij van elementen heet de symmetrische groep . De naam van deze groep is niet aan de symmetrie in de groep ontleend.
De symmetrieën, dat wil zeggen rotaties en spiegelingen, van een vierkant vormen een groep die de dihedrale groep wordt genoemd.[21] De dihedrale groep kent de onderstaande acht symmetrieën:
Elke twee symmetrieën en kunnen worden samengesteld, dat wil zeggen, de een na de ander toegepast. Het resultaat van eerst uitvoeren en dan wordt symbolisch van rechts naar links geschreven als ("pas de symmetrie toe, na eerst de symmetrie uitgevoerd te hebben". De van "rechts-naar-links" notatie komt voort uit de samenstelling van functies). De groepstabel aan de rechterkant geeft de resultaten van alle mogelijke samenstelling van symmetrieën. De 270° rotatie met de klok mee () en vervolgens horizontaal omkeren () is hetzelfde als het uitvoeren van een spiegeling over de diagonaal (). Door gebruik te maken van de bovengenoemde symbolen, die in het blauw in de groepstabel zijn weergegeven:
• | ||||||||
---|---|---|---|---|---|---|---|---|
id | ||||||||
De elementen en vormen een ondergroep, die in het roze (bovenkant links) is aangegeven. Een linker en rechter nevenklasse van deze ondergroep is respectievelijk in het groen (in de laatste rij) en in het geel (de laatste kolom) aangegeven. |
Gezien deze verzameling van symmetrieën en de beschreven operatie, kunnen de groepsaxioma's als volgt worden opgevat:
In contrast met de groep van de gehele getallen zoals hierboven besproken, waar de volgorde van de operatie niet relevant is, is dit in D4 wel van belang, bijvoorbeeld:
maar