Loading AI tools
Van Wikipedia, de vrije encyclopedie
In de groepentheorie is de symmetriegroep van een object in een, twee of drie dimensies de groep van zijn symmetriën. Een symmetrie is een afbeelding die het object op zichzelf afbeeldt (invariant laat) en daarbij de afstanden behoudt (isometrie). De bewerking in de groep is de samenstelling van afbeeldingen. Als object komen zeer algemeen niet alleen concrete objecten, zoals voorwerpen, gebouwen e.d. in aanmerking, maar ook wiskundige concepten als meetkundige figuren en patronen.
Zo bestaat bijvoorbeeld de symmetriegroep van een gelijkzijdige driehoek in het platte vlak uit de identiteit, de draaiingen om het zwaartepunt over 120° en 240°, en de spiegelingen om de hoogtelijnen.
De symmetriegroep is een isometriegroep, dus een subgroep van de euclidische groep . Deze moet worden onderscheiden van de abstracte (algebraïsche) groep: verschillende symmetriegroepen kunnen als abstracte groep gelijk zijn. Dit wordt ook aangeduid met het hebben van dezelfde abstracte structuur of dezelfde algebraïsche structuur.
Men kan zich een voorstelling maken van een symmetriegroep door de symmetrieën na te gaan van een concrete tweedimensionale figuur of een driedimensionaal object. Soms kan men hetzelfde object gebruiken voor het beschrijven van meerdere symmetrieën, door verschillende beschilderingen van het object te onderscheiden.
De symmetriegroep van een (nader) beschilderd object is een ondergroep van die van het eerdere object, als ieder tweetal punten met oorspronkelijk verschillende kleuren, hierna nog steeds verschillende kleuren heeft. Voor een zwart-wittekening op een vlak (zoals een tekening in zwart op een wit vlak) is de genoemde voldoende voorwaarde bijvoorbeeld vervuld als sommige witte delen rood worden en sommige andere blauw, en sommige zwarte delen groen worden. Als bijvoorbeeld een wit vierkant op een grijze achtergrond ingekleurd wordt (de achtergrond blijft hetzelfde, en bij het inkleuren wordt geen grijs gebruikt), of als een vierkant wit papier wordt ingekleurd, dan is de symmetriegroep van het hele vlak met het ingekleurde vierkant gelijk aan die van het ingekleurde vierkant zelf, en is deze een van de ondergroepen van de symmetriegroep van het vierkant. Als daarentegen bijvoorbeeld een zwart-wittekening wordt gewijzigd door er iets bij te tekenen dan kan de symmetrie ook toenemen, zo heeft een vlak met de letter F erop geen symmetrie, maar wel nadat het spiegelbeeld (even groot, op een willekeurige plaats en in een willekeurige stand) erbij wordt getekend.
Voor de symmetrie is van de inkleuring alleen van belang de daarmee bepaalde partitie van een euclidische ruimte of deelverzameling daarvan. De achtergrond kan al of niet als element van de partitie meegenomen worden. Dit maakt alleen verschil voor de symmetriegroep als de dimensie van een object kleiner is dan die van zijn achtergrond, bijvoorbeeld een lijnstuk in een vlak. Een nadere inkleuring komt neer op een nesting van de partitie (een nadere onderverdeling in meer delen). In 3D is de "achtergrond" net als in 2D de rest van de ruimte. Als het gaat om zichtbare aspecten van een object in 3D gaat het om de vorm, en om de kleuren van het oppervlak, inclusief de vormen van wat met die kleuren op het oppervlak is geschilderd/getekend/geschreven.
Isometrieën kunnen worden onderscheiden in die zonder en die met verandering van oriëntatie. Verandering van oriëntatie vindt plaats:
Puntspiegeling in twee dimensies valt hier niet onder.
Een symmetriegroep bevat óf alleen isometrieën zonder verandering van oriëntatie (zo'n symmetriegroep en figuren/objecten met zo'n symmetriegroep heten chiraal), óf zowel met als zonder. In het laatste geval vormen de isometrieën zonder verandering van oriëntatie een subgroep: de chirale versie van de symmetriegroep, corresponderend met de chirale versie van de betreffende symmetrie.
Als de positie en stand van spiegels[1] buiten beschouwing gelaten wordt zijn alle eindige chirale symmetriegroepen in één dimensie en twee dimensies de chirale versie van precies één achirale symmetriegroep, maar in drie dimensies zijn alle eindige chirale symmetriegroepen de chirale versie van meerdere achirale symmetriegroepen, behalve bij octahedrale en icosahedrale symmetrie (zie onder). Ook zijn alle chirale strookpatroongroepen de chirale versie van meerdere achirale symmetriegroepen. Van de chirale behangpatroongroepen is alleen p6 de chirale versie van maar één achirale symmetriegroep.
In drie dimensies is elke eindige chirale symmetriegroep de chirale versie van precies één achirale symmetriegroep die (de groep voortgebracht door puntspiegeling) bevat, namelijk de directe som van die chirale symmetriegroep en .[2][3]
In drie dimensies is ook elke translatiegroep de chirale versie van precies één achirale symmetriegroep die bevat, die ook gevormd door toevoeging van de combinaties van een translatie en de inverse, alleen commuteren die niet. Iets dergelijks kan ook gelden bij andere chirale symmetriegroepen, maar dan met dien verstande dat het gaat om de inversie t.o.v. een geschikt punt, bijvoorbeeld op een rotatie-as.
Soms heeft een symmetriegroep twee subgroepen en met de volgende eigenschappen:
Ieder element kan dan op precies één manier geschreven worden als met en . De groepsoperatie van kan teruggebracht worden tot die binnen en : .
In één dimensie, twee dimensies en drie dimensies kan bijvoorbeeld de groep zijn voortgebracht door inversie, en een groep die de inversie niet bevat. In drie dimensies is een ander voorbeeld: bestaat uit rotaties om een as en eventueel spiegelingen om vlakken door die as, en wordt voortgebracht door spiegeling in een vlak loodrecht op de as.
Een en ander kan de structuur van de symmetriegroep verduidelijken; hieronder wordt de notatie gebruikt. Een gevolg van deze relatie (niet hetzelfde!) is dat de algebraïsche structuur van het product is van die van en die van . Ter onderscheiding wordt daarbij het teken gebruikt.
Bij de indeling van symmetriegroepen in één dimensie, twee dimensies en drie dimensies is een eerste vereenvoudiging om ze te beschouwen "afgezien van translatie en rotatie". Bij een verplaatsbaar fysiek object (star lichaam) is dit des te meer voor de hand liggend omdat de positie of stand van het fysieke object eigenlijk geen eigenschappen zijn van het object zelf. In één dimensie is er geen rotatie, in twee dimensies is er alleen rotatie in het vlak.
Als object B uit A ontstaat door een directe isometrie dan zijn hun symmetriegroepen geconjugeerde subgroepen van de euclidische groep, dat wil zeggen dat de precieze symmetriegroep van B verkregen wordt uit die van A door de directe isometrie toe te passen op de eventuele spiegelvlakken en rotatieassen (inclusief die van schroefdraaiing en draaispiegeling), en de translatievectoren. Verder geldt dat als een symmetrie van A is, de bijbehorende symmetrie van B is.
Als het gaat om bijvoorbeeld de symmetrie van een vierkante kleurenplaat dan zijn de symmetrie met spiegels evenwijdig aan de zijden (s2As) en die met diagonale spiegels (s2Diag) niet geconjugeerd als subgroepen van de symmetriegroep van het vierkant als ruimte, maar wel als subgroepen van de symmetriegroep van het hele vlak, de omliggende-cirkelschijf of de omliggende achthoek ().
Ook bij deze gelijkstelling kunnen verschillende symmetriegroepen, zelfs een chirale en een achirale, nog algebraïsch gelijk zijn.
Een verdere gelijkstelling van symmetriegroepen is om ze te beschouwen "afgezien van uniforme verschaling". Bij eindige symmetriegroepen is dit niet aan de orde omdat bij uniforme verschaling van een object ten opzichte van een gegeven punt de meetkundige symmetriegroep exact gelijk blijft, maar wel als er translaties en/of glijspiegelingen tot symmetriegroepen behoren. Deze verdere gelijkstelling ligt voor de hand omdat de structuur van de meetkundige symmetriegroep niet verandert.
Met deze gelijkstelling zijn er zeven strookpatroongroepen.
Het geheel van symmetrie van een tweedimensionaal patroon met minstens translatiesymmetrie in twee richtingen kan worden ingedeeld in 17 categorieën, de behangpatroongroepen. Binnen een categorie kunnen parameters variëren, maar is het geheel van symmetrie in essentie hetzelfde. De hiervoor genoemde categorieën zijn bij acht hogere soorten symmetrie steeds een eigen behangpatroongroep, terwijl de overige negen behangpatroongroepen ook na de gelijkstellingen nog steeds categorieën van meerdere symmetriegroepen zijn. Het zijn de gevallen met hoogstens rotatiesymmetrie van orde 2, omdat daarbij de lengteverhouding tussen de translatievectoren en/of de hoek ertussen niet vastligt.
Een achirale symmetriegroep bevat evenveel chirale als achirale elementen.
Men kan een object dat qua vorm een bepaalde symmetrie heeft beschilderen (bijvoorbeeld in het geval van een veelvlak door de zijvlakken te kleuren of te nummeren[4]) zodanig dat er geen symmetrie meer is. Elke stand van het object waarin het dezelfde ruimte inneemt als in de oorspronkelijke stand correspondeert met een element van de symmetriegroep van het onbeschilderde object; de standen zijn te onderscheiden door de beschildering (zie de afbeelding). De standen waarin men het object als fysiek object daadwerkelijk kan plaatsen zijn die waarbij men alleen hoeft te draaien; deze corresponderen met de elementen van de chirale versie van de symmetriegroep. Als het object qua vorm achirale symmetrie heeft, kan men de standen die corresponderen met de overige elementen van de symmetriegroep in een spiegel zien.
Voor objecten in een euclidische ruimte met een eindige symmetriegroep geldt dat alle isometrieën van de ruimte die het object in zichzelf afbeelden een gemeenschappelijk dekpunt hebben. Deze isometrieën worden verder geheel bepaald door hun restrictie tot de eenheidssfeer om dat dekpunt. Bij een vast dekpunt komen daarom alle symmetriegroepen 1-op-1 overeen met die op de eenheidssfeer: in 1D twee punten, in 2D een cirkel en in 3D een boloppervlak. Rotatiesymmetrie in 2D wordt dan geheel bepaald door de orde ervan, in 3D mede door de rotatie-as, en daarmee door een tweetal antipodale punten op het boloppervlak.
De symmetriegroepen zijn de triviale groep (geen symmetrie) en de groep van orde 2 die bestaat uit de identieke afbeelding en een puntspiegeling. In de notatie van orthogonale groepen zijn dit en .
Van een chirale figuur is de symmetriegroep de cyclische groep van orde , corresponderend met rotatiesymmetrie van orde t.o.v. een punt (). Het geval geldt voor een figuur zonder symmetrie.
Van de overige figuren is de symmetriegroep de dihedrale groep van orde (). Er zijn spiegels, die hoeken maken van . Als oneven is, verkrijgt men deze uit één spiegel door steeds te draaien over de hoek corresponderend met de rotatiesymmetrie: . Als even is, krijgt men op deze wijze maar de helft van de spiegels, doordat men na draaiingen weer de oorspronkelijke spiegel krijgt. De overige spiegels zitten hier tussenin. Het geval geldt voor een figuur met alleen enkelvoudige spiegelsymmetrie.
Voorbeelden van figuren met als symmetriegroep de dihedrale groep zijn de regelmatige veelhoeken. Voorbeelden van chirale figuren zijn die zonder symmetrie () en die met een S-vorm (); voor zijn ze iets minder eenvoudig en gebruikelijk, voorbeelden zijn de verkeersborden voor een rotonde, en het hakenkruis.
Een viervlak kan door middel van rotatie in twaalf verschillende posities worden geplaatst. Deze worden hiernaast in een cyclische graaf geïllustreerd, die het viervlak door de twaalf posities permuteren. Deze twaalf rotaties vormen de symmetrische rotatiegroep van het viervlak.
De volgende soorten isometrie kunnen voorkomen in eindige symmetriegroepen:
Er zijn zeven reeksen symmetriegroepen, met indices ) en zeven aparte.
De symmetriegroepen in de zeven reeksen met zijn de symmetriegroepen met één as van rotatiesymmetrie van een orde groter dan twee, en wel van orde n. De zeven aparte hebben er meer, ze hebben alle zeven meerdere assen van rotatiesymmetrie van orde 3, in drie gevallen ook van orde 4, en in twee gevallen niet van orde 4 maar wel van orde 5. Verder zijn er enkele symmetriegroepen zonder rotatiesymmetrie van een orde groter dan twee, ze vallen onder de zeven reeksen, met en , maar het zijn er 10 in plaats van 14, want 8 zijn er twee aan twee hetzelfde. Meer mogelijkheden zijn er voor eindige symmetriegroepen niet, dus als er bijvoorbeeld een as van rotatiesymmetrie van orde 6 is dan is er geen andere as van rotatiesymmetrie van een orde groter dan twee; verder bestaat er bijvoorbeeld geen eindige symmetriegroep met een as van rotatiesymmetrie van orde 4 en een andere van orde 5.
Als een veelvlak waarvan de zijvlakken regelmatige veelhoeken zijn, dient als voorbeeld voor een achirale symmetrie(groep) dan kan men een voorbeeld van de chirale versie van de symmetriegroep construeren door voor een of meer van de van toepassing zijnde waarden van elk zijvlak dat een regelmatige -hoek is te voorzien van dezelfde chirale figuur met rotatiesymmetrie van orde , in steeds dezelfde stand ten opzichte van de -hoek[5]. Alle chirale symmetrie blijft dan intact, terwijl alle achirale vervalt.
De symmetriegroepen in de zeven reeksen zijn gerelateerd aan de zeven strookpatroongroepen, met rotatie in plaats van translatie. In dezelfde volgorde als de strookpatroongroepen zijn dit (met voorbeelden):
Van alle johnsonlichamen is de symmetriegroep in deze categorieën met .
Voor en geeft het bovenstaande 14 gevallen waarvan er 8 twee aan twee gelijk zijn, dus 10 verschillende, als volgt. Bij twee gelijke is per notatie een voorbeeld gegeven dat overeenkomt met het boven gegeven voorbeeld.
Met chirale versie :
Met chirale versie :
Met chirale versie :
Er zijn zeven symmetriegroepen met meer dan één as van rotatiesymmetrie van een orde groter dan twee. Deze corresponderen met symmetrieën die soms gezamenlijk worden aangeduid als polyhedrale symmetrie.
Van de drie symmetriegroepen met assen van rotatiesymmetrie van orde 3 zonder assen van hogere orde corresponderen er twee met tetrahedrale symmetrie, de volledige versie en chirale versie . De orde van deze twee groepen is 24 en 12. is de symmetrie van het viervlak en een archimedisch lichaam, de afgeknotte tetraëder. is algebraïsch de symmetrische groep , want de elementen van komen 1-op-1 overeen met de permutaties van de 4 hoekpunten. is algebraïsch de alternerende groep , want de elementen van komen 1-op-1 overeen met de even permutaties van de 4 hoekpunten. De derde, , is pyritohedrale symmetrie, dit is de symmetrie van een kubus met op elk zijvlak een lijnstuk dat de middens van twee tegenover elkaar liggende zijden verbindt, zodanig dat zulke lijnstukken elkaar niet raken. De orde is 24. en dus algebraïsch . De groep is niet alleen de chirale versie van maar ook van .
De twee symmetriegroepen met assen van rotatiesymmetrie van orde 3 en assen van orde 4 corresponderen met octahedrale symmetrie, de volledige versie en chirale versie zoals in de symmetriegroep van de kubus). De orde van deze twee groepen is 48 en 24. is de symmetrie van de kubus, de octaëder en vijf archimedische lichamen. Twee archimedische lichamen, namelijk de beide versies van de stompe kubus, zijn chiraal met als totale symmetriegroep. is algebraïsch de symmetrische groep , waarbij de elementen 1-op-1 overeenkomen met de permutaties van de lichaamsdiagonalen van de kubus[14] en dus algebraïsch . Naast zijn ook en (en dus ) subgroepen van . De groep is een subgroep van O. De groepen , , , en zijn de symmetriegroepen van de kubus met:
De twee symmetriegroepen met assen van rotatiesymmetrie van orde 3 en assen van orde 5 corresponderen met icosahedrale symmetrie (volledige versie en chirale versie ). De orde is 120, resp. 60. is de symmetrie van het regelmatige twaalfvlak, regelmatige twintigvlak, vijf archimedische lichamen waaronder de als voetbal zeer bekende afgeknotte icosaëder, en alle vier de kepler-poinsot-lichamen. Twee archimedische lichamen, namelijk de beide versies van de stompe dodecaëder, zijn chiraal met als totale symmetriegroep. is algebraïsch (de even permutaties van 5 elementen). De 20 hoekpunten van een twaalfvlak kunnen namelijk op twee manieren over 5 groepen van 4 worden verdeeld die elk de hoekpunten vormen van een viervlak. De elementen van corresponderen 1-op-1 met de even permutaties van de 5 viervlakken. , dus algebraïsch .
Het aantal symmetriegroepen van orde is, zoals uit het bovenstaande volgt, 7 voor een viervoud, 1 voor een viervoud plus 1, 5 voor een viervoud plus 2 en 1 voor een viervoud plus 3, met als uitzonderingen voor = 2, 4, 12, 24, 48, 60. 120 resp. 3, 5, 8, 10, 8, 8, 8 (waarvan chiraal resp. 2, 1, 2, 1 en 1, 2, 3, 3, 2, 3, 2).
Cyclisch (en dus abels) zijn , en voor oneven . Ook abels zijn voor even en .
Voor een viervoud plus 0, 1, 2 of 3 is het aantal cyclische symmetriegroepen van orde dus respectievelijk 2, 1, 3 of 1 en het aantal abelse symmetriegroepen van orde resp. 3, 1, 3 of 1, met als uitzonderingen voor resp. 5, 4.
Anders gerangschikt:
De kleinste abstracte groepen die van geen enkele symmetriegroep de abstracte structuur is, zijn en de dicyclische groepen (quaternionengroep) en .
Er zijn twee symmetriegroepen met een even aantal elementen zonder ondergroep met de helft van het aantal elementen: en .
Algebraïsche groepen van eindige symmetriegroepen in één dimensie, twee dimensies en drie dimensies zijn dat per dimensie van een unieke symmetriegroep, behoudens translatie en rotatie, bij alle symmetriegroepen in één dimensie en twee dimensies, en bij de volgende in drie dimensies (tussen haakjes staan de abstracte groepen):
Bij de overige eindige symmetriegroepen impliceert de abstracte groep niet eenduidig de symmetriegroep.
Een symmetriegroep heeft aftelbaar oneindig veel elementen o.m. als er translaties bij zijn, zie ook strookpatroongroep en behangpatroongroep.
Een symmetriegroep met overaftelbaar veel elementen is in twee dimensies bijvoorbeeld de symmetriegroep corresponderend met cirkelsymmetrie, de orthogonale groep . Een ander voorbeeld is die waarbij in één richting niets verandert. Het zijn voorbeelden in twee dimensies van continue symmetrie.
Symmetriegroepen met overaftelbaar veel elementen zijn in drie dimensies bijvoorbeeld cilindersymmetrie en bolsymmetrie. Het zijn voorbeelden in drie dimensies van continue symmetrie.
Een ander voorbeeld is de symmetriegroep die een schroefdraaiing om een bepaalde as bevat, en wel, gezien vanuit een bepaald punt op de as, draaiing met de klok mee over een hoek , in combinatie van een translatie van de waarnemer af over een afstand , en dat voor iedere . Bij positieve is dit rechtsdraaiende schroefsymmetrie, bij negatieve linksdraaiend. Het is de symmetrie van een helix en van een naar twee kanten oneindige cilindervormige schroef (zonder kop). Bij een rechtsdraaiende schroef die verticaal wordt gehouden lopen de groeven van de zijkant gezien van linksonder naar rechtsboven, en als hij horizontaal wordt gehouden van rechtsonder naar linksboven. Bij een linksdraaiende schroef is dit andersom. Een fundamenteel domein van de symmetrie is een willekeurig vlak loodrecht op de as.
In de aftelbare variant van deze symmetrie neemt als waarden alleen veelvouden van een vaste hoek tussen 0° en 180° aan.
Als het gaat om visuele symmetrie kunnen bepaalde tussenvormen tussen discrete en continue symmetrie buiten beschouwing worden gelaten, zoals met een symmetriegroep die in een bepaalde richting willekeurig kleine, maar niet alle translaties bevat, of ten opzichte van een bepaald punt willekeurig kleine, maar niet alle rotaties. Voor een symmetriegroep kan men daarbij formeel het criterium hanteren of voor elk punt de verzameling een gesloten verzameling is. Bij de "tussenvormen" is dat niet het geval. Als deze buiten beschouwing worden gelaten worden overzichten van alle symmetriegroepen voor een bepaalde ruimte eenvoudiger.
Een voorbeeld van een "tussenvorm" voor de eendimensionale ruimte is de translatiegroep voortgebracht door translaties met afstand 1 en √2. De verzameling translatie-afstanden is aftelbaar, maar ligt dicht in . Deze verzameling is dus niet gesloten. Deze translatiegroep is bijvoorbeeld de symmetriegroep van .
Als de tussenvormen buiten beschouwing worden gelaten blijven voor de eendimensionale ruimte de volgende symmetriegroepen over:
De groep van alle translaties is van geen enkel object de symmetriegroep.
Voor het vlak blijven de volgende symmetriegroepen over, zie ook boven:
Onder meer de groep van alle rotaties om een punt is van geen enkel object de symmetriegroep.
De symmetriegroep van een object dat zich uitstrekt over een verzameling van twee of meer punten op een rechte lijn hangt volgens bovenstaande definitie ervan af of het een object in bijvoorbeeld de een-, twee- of driedimensionale euclidische ruimte is. Vergeleken met de symmetrie van het object als object in de eendimensionale euclidische ruimte komt er als object in de tweedimensionale euclidische ruimte spiegelsymmetrie in de betreffende lijn bij, en als object in de driedimensionale euclidische ruimte meer spiegelsymmetrie en ook rotatiesymmetrie met de betreffende lijn als as. De symmetriegroep van het object op zich is de symmetriegroep van dit object in de verzameling waarover dit object zich uitstrekt, met de geïnduceerde metriek. Deze symmetriegroep komt in het voorbeeld in essentie overeen met die van het object in de eendimensionale euclidische ruimte (niet alleen algebraïsch isomorf, maar ook qua meetkundige aspecten).
In plaats van rechtstreeks kan de symmetriegroep van een object in een euclidische ruimte ook worden gedefinieerd uitgaande van de genoemde definitie van de symmetriegroep van een object op zich, en wel door het geheel van het object en de rest van de ruimte als nieuw object te beschouwen (zoals bij een afbeelding een egale achtergrond wel of niet tot de afbeelding gerekend kan worden).
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.