ਜਾਦੂਈ ਵਰਗ
From Wikipedia, the free encyclopedia
Remove ads
ਜਾਦੂਈ ਵਰਗ, ਵਰਗ ਗਰਿੱਡ ਵਿੱਚ ਨੰਬਰਾ ਨੂੰ ਤਰਤੀਬ ਇਸ ਤਰ੍ਹਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਕਿ ਹਰੇਕ ਕਤਾਰ, ਹਰੇਕ ਕਾਲਮ ਅਤੇ ਹਰੇਕ ਵਿਕਰਨ ਵਿੱਚ ਨੰਬਰਾਂ ਦਾ ਜੋੜ ਇਕੋ ਜਿਹਾ ਹੁੰਦਾ ਹੈ। ਜਾਦੂਈ ਵਰਗ ਦੇ ਕਾਲਮ ਅਤੇ ਕਤਾਰਾ ਦੀ ਗਿਣਤੀ ਇਕੋ ਹੀ ਹੁੰਦੀ ਹੈ। ਜੇ ਕਿਸੇ ਜਾਦੂਈ ਵਰਗ ਵਿੱਚ "n" ਕਾਲਮ ਜਾਂ ਕਤਾਰਾ ਹੋਣ ਤਾਂ ਜਾਦੂਈ ਵਰਗ ਵਿੱਚ ਅੰਕਾ ਦੀ ਗਿਣਤੀ ਹੋਵੇਗੀ। ਕਿਸੇ ਵੀ ਅਕਾਰ ਦਾ ਜਾਦੂਈ ਵਰਗ ਬਣਾਇਆ ਜਾ ਸਕਦਾ ਹੈ ਸਿਰਫ 2 × 2 ਤੋਂ ਬਗੈਰ। ਜਾਦੂਈ ਵਰਗ ਦੇ ਕਾਲਮ, ਕਤਾਰ ਜਾਂ ਵਿਕਰਨ ਦੇ ਅੰਕਾ ਦਾ ਜੋ ਜੋੜ ਹੁੰਦਾ ਹੈ ਉਸ ਨੂੰ ਜਾਦੂਈ ਸਥਿਰ ਅੰਕ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਜਾਦੂਈ ਸਥਿਰ ਅੰਕ M ਨੂੰ ਹੇਠ ਲਿਖੇ ਫਾਰਮੂਲੇ ਨਾਲ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ ਜਿਥੇ n ਜਾਦੂਈ ਵਰਗ ਦੇ ਕਾਲਮ ਜਾਂ ਕਤਾਰ ਦੀ ਗਿਣਤੀ ਹੈ।[1]
- ਉਦਾਹਰਣ ਲਈ, ਜੇ n = 3, ਹੋਵੇ ਤਾਂ M = [3 (32 + 1)]/2, ਜਿਸ ਨੂੰ ਹੱਲ ਕਰਨ ਤੇ 15 ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ਇਸੇ ਤਰ੍ਹਾਂ ਹੀ ਜੇ ਜਾਦੂਈ ਵਰਗ ਦਾ ਆਰਡਰ n = 3, 4, 5, 6, 7, ਅਤੇ 8, ਤਾਂ ਜਾਦੂਈ ਸਥਿਰ ਅੰਕ ਕਰਮਵਾਰ: 15, 34, 65, 111, 175, ਅਤੇ 260 ਹਨ।
Remove ads
ਵੈਦਿਕ ਸਮੇਂ ਤੋਂ ਹੀ ਭਾਰਤ ਨਾਲ 3×3 ਦਾ ਜਾਦੂਈ ਵਰਗ ਦਾ ਸੰਬੰਧ ਰਿਹਾ ਹੈ ਅਤੇ ਹੁਣ ਵੀ ਹੈ। ਗਣੇਸ਼ ਯੰਤਰਾ ਇੱਕ 3×3 ਜਾਦੂਈ ਵਰਗ ਹੈ। ਦਸਵੀਂ ਸਦੀ ਵਿੱਚ ਬਣੇ ਖੁਜਰਾਹੋ ਦੇ ਜੈਨ ਮੰਦਰ ਵਿੱਚ 4×4 ਦਾ ਜਾਦੂਈ ਵਰਗ ਨੂੰ ਦਰਸਾਇਆ ਗਿਆ ਹੈ।[2]
7 | 12 | 1 | 14 |
2 | 13 | 8 | 11 |
16 | 3 | 10 | 5 |
9 | 6 | 15 | 4 |
ਇਸ ਨੂੰ ਚੋਤਸ ਯੰਤਰ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਕਿਉਂਕੇ ਇਸ ਦੀ ਹਰੇਕ ਕਾਲਮ, ਕਤਾਰ ਅਤੇ ਵਿਕਰਨ, ਹਰੇ 2×2 ਸਬ ਵਰਗ, 3×3 ਦਾ ਹਰੇਕ ਕੋਨੇ ਦਾ ਅਤੇ 4×4 ਦਾ ਜਾਦੂਈ ਵਰਗ ਅਤੇ (1+11+16+6 and 2+12+15+5), ਦੋ ਮੱਧ ਦੀਆਂ ਕਾਲਮਾਂ (12+1+6+15 ਅਤੇ 2+16+11+5),ਇਹਨਾਂ ਸਾਰਿਆ ਦਾ ਜੋੜ 34 ਹੁੰਦਾ ਹੈ।
1 | 15 | 6 | 12 |
14 | 4 | 9 | 7 |
11 | 5 | 16 | 2 |
8 | 10 | 3 | 13 |
23 | 28 | 21 |
22 | 24 | 26 |
27 | 20 | 25 |
Remove ads
ਹਵਾਲੇ
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads