ਡੀਰਾਕ ਅਲਜਬਰਾ

From Wikipedia, the free encyclopedia

Remove ads

ਗਣਿਤਿਕ ਭੌਤਿਕ ਵਿਗਿਆਨ ਅੰਦਰ, ਡੀਰਾਕ ਅਲਜਬਰਾ ਕਲਿੱਫੋਰਡ ਅਲਜਬਰਾ C4(C) ਹੁੰਦਾ ਹੈ, ਜਿਸਨੂੰ C1,3(C) ਦੇ ਤੌਰ ਤੇ ਸੋਚਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਇਹ ਗਣਿਤਿਕ ਭੌਤਿਕ ਵਿਗਿਆਨੀ ਪੀ. ਏ. ਐੱਮ. ਡੀਰਾਕ ਦੁਆਰਾ 1928 ਵਿੱਚ ਡਿਰਾਕ ਗਾਮਾ ਮੈਟ੍ਰਿਕਸਾਂ ਵਾਲੀ ਇੱਕ ਮੈਟ੍ਰਿਕਸ ਪ੍ਰਸਤੁਤੀ ਵਾਲੇ ਸਪਿੱਨ-1/2 ਕਣਾਂ ਲਈ ਡੀਰਾਕ ਇਕੁਏਸ਼ਨ ਵਿਕਸਿਤ ਕਰਨ ਵੇਲੇ ਪਹਿਲੀ ਵਾਰ ਪੇਸ਼ ਕੀਤਾ ਗਿਆ ਸੀ, ਜੋ ਅਲਜਬਰੇ ਦੇ ਜਨਰੇਟਰਾਂ ਨੂੰ ਪ੍ਰਸਤੁਤ ਕਰਦੇ ਹਨ।

ਗਾਮਾ ਤੱਤ ਇਹ ਪਰਿਭਾਸ਼ਾ ਸਬੰਧ ਵਾਲੇ ਹੁੰਦੇ ਹਨ

ਜਿੱਥੇ

  • , ਸਿਗਨੇਚਰ (+ ) ਵਾਲੇ ਮਿੰਕੋਵਸਕੀ ਮੈਟ੍ਰਿਕ ਦੇ ਪੁਰਜੇ ਹਨ ਅਤੇ
  • ਅਲਜਬਰੇ ਦਾ ਪਛਾਣ ਤੱਤ ਹੈ (ਕਿਸੇ ਮੈਟ੍ਰਿਕਸ ਪ੍ਰਸਤੁਤੀ ਦੇ ਮਾਮਲੇ ਵਿੱਚ ਪਛਾਣ ਮੈਟ੍ਰਿਕਸ)। ਇਹ ਕਿਸੇ ਸਕੇਲਰ ਗੁਣਨਫਲ ਦੀ ਪਰਿਭਾਸਾ ਸੰਭਵ ਕਰਦਾ ਹੈ;

ਜਿੱਥੇ

ਅਤੇ

ਹੋਵੇ।

Remove ads

ਡੀਰਾਕ ਅਤੇ ਕਲੇਇਨ-ਗੌਰਡਨ ਇਕੁਏਸ਼ਨ ਤੋਂ ਸ਼ੁਰੂ ਹੁੰਦੀ ਵਿਉਂਤਬੰਦੀ

ਗਾਮਾ ਤੱਤਾਂ ਦੀ ਪਰਿਭਾਸ਼ਾਤਮਿਕ ਕਿਸਮ ਨੂੰ ਵਿਓਂਤਬੰਦ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਜੇਕਰ ਡੀਰਾਕ ਇਕੁਏਸ਼ਨ ਦੀ ਕੋਵੇਰੀਅੰਟ ਕਿਸਮ:

ਅਤੇ ਕਲੇਇਨ-ਗੌਰਡਨ ਇਕੁਏਸ਼ਨ:

ਦਿੱਤੀਆਂ ਗਈਆਂ ਹੋਣ, ਅਤੇ ਇਸ ਗੱਲ ਦੀ ਜਰੂਰਤ ਹੋਵੇ ਕਿ ਇਹ ਸਮੀਕਰਨਾਂ ਅਨੁਕੂਲ ਨਤੀਜੇ ਦਿੰਦੀਆਂ ਹਨ।

Remove ads

Cℓ1,3(C) ਅਤੇ Cℓ1,3(R)

ਡੀਰਾਕ ਅਲਜਬਰਾ ਵਾਸਤਵਿਕ ਸਪੇਸਟਾਈਮ ਅਲਜਬਰੇ C1,3(R) ਦੀ ਇੱਕ ਕੰਪਲੈਕਸੀਫੀਕੇਸ਼ਨ ਦੇ ਤੌਰ ਤੇ ਸਮਝਿਆ ਜਾ ਸਕਦਾ ਹੈ:

C1,3(R) ਅਲਜਬਰਾ, C1,3(C): in C1,3(R) ਤੋਂ ਸਿਰਫ ਇਸ ਗੱਲ ਵਿੱਚ ਵੱਖਰਾ ਹੁੰਦਾ ਹੈ ਕਿ ਗਾਮਾ ਮੈਟ੍ਰਿਕਸਾਂ ਦੇ ਸਿਰਫ ਵਾਸਤਵਿਕ ਲੀਨੀਅਰ ਮੇਲ ਅਤੇ ਉਹਨਾਂ ਦੇ ਗੁਣਨਫਲ ਹੀ ਪ੍ਰਵਾਨਿਤ ਹੁੰਦੇ ਹਨ।

ਰੇਖਾਗਣਿਤਿਕ ਅਲਜਬਰੇ ਦੇ ਚੇਲੇ, ਜਿੱਥੇ ਵੀ ਸੰਭਵ ਹੋਵੇ ਵਾਸਤਵਿਕ ਅਲਜਬਰਿਆਂ ਨਾਲ ਕੰਮ ਕਰਨ ਦੀ ਕੋਸ਼ਿਸ਼ ਵਿੱਚ ਲੱਗੇ ਰਹੰਦੇ ਹਨ। ਉਹ ਤਰਕ ਕਰਦੇ ਹਨ ਕਿ ਕਿਸੇ ਭੌਤਿਕੀ ਸਮੀਕਰਨ ਵਿੱਚ ਕਿਸੇ ਕਾਲਪਨਿਕ ਇਕਾਈ ਦੀ ਹਾਜ਼ਰੀ ਨੂੰ ਪਛਾਣਨਾ ਆਮਤੌਰ ਤੇ ਸੰਭਵ (ਅਤੇ ਆਮਤੌਰ ਤੇ ਗਿਆਨ-ਭਰਪੂਰ) ਹੁੰਦਾ ਹੈ। ਅਜਿਹੀਆਂ ਇਕਾਈਆਂ -1 ਤੱਕ ਵਰਗ ਹੋ ਜਾਣ ਵਾਲੀਆਂ ਕਿਸੇ ਵਾਸਤਵਿਕ ਕਲਿੱਫੋਰਡ ਅਲਜਬਰੇ ਵਿਚਲੀਆਂ ਕਈ ਮਾਤ੍ਰਾਵਾਂ ਵਿੱਚੋਂ ਕਿਸੇ ਇੱਕ ਤੋਂ ਪੈਦਾ ਹੁੰਦੀਆਂ ਹਨ, ਅਤੇ ਇਹ, ਅਲਜਬਰੇ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਅਤੇ ਇਸਦੀਆਂ ਵਿਭਿੰਨ ਉੱਪ-ਸਪੇਸਾਂ ਨਾਲ ਪਰਸਪਰ ਕ੍ਰਿਆ ਕਾਰਣ, ਰੇਖਾਗਣਿਤਿਕ ਮਹੱਤਤਾ ਰੱਖਦੀਆਂ ਹਨ। ਇਹਨਾਂ ਚੇਲਿਆਂ ਵਿੱਚੋਂ ਕੁੱਝ ਇਹ ਸਵਾਲ ਵੀ ਕਰਦੇ ਹਨ ਕਿ ਡਿਰਾਕ ਇਕੁਏਸ਼ਨ ਦੇ ਸੰਦ੍ਰਭ ਵਿੱਚ ਕਿਸੇ ਵਾਧੂ ਕਾਲਪਨਿਕ ਇਕਾਈ ਨੂੰ ਪੇਸ਼ ਕਰਨਾ ਕਿਸੇ ਫਾਇਦੇ ਦਾ ਜਾਂ ਲਾਜ਼ਮੀ ਹੈ ਵੀ ਕਿ ਨਹੀਂ।

ਸਮਕਾਲੀਨ ਅਭਿਆਸ ਵਿੱਚ, ਡੀਰਾਕ ਅਲਜਬਰਾ ਸਪੇਸਟਾਈਮ ਅਲਜਬਰੇ ਦੀ ਥਾਂ, ਮਿਆਰੀ ਵਾਤਾਵਰਨ, ਡਿਰਾਕ ਇਕੁਏਸ਼ਨ ਦੇ ਸਪਿੱਨੌਰਾਂ ਨੂੰ ਜੀਉਂਦਾ ਰੱਖਣਾ ਜਾਰੀ ਰੱਖਦਾ ਹੈ।

Remove ads

ਹਵਾਲੇ

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads