ਨਾਂਬੂ-ਜੋਨਾ-ਲਾਸੀਨੀਓ ਮਾਡਲ

From Wikipedia, the free encyclopedia

Remove ads
Remove ads

ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ ਵਿੱਚ, ਨਾਂਬੂ-ਜੋਨਾ-ਲਾਸੀਨੀਓ ਮਾਡਲ (ਜਾਂ ਹੋਰ ਸ਼ੁੱਧਤਾ ਨਾਲ: ਨਾਂਬੂ ਅਤੇ ਜੋਨਾ-ਲਾਸੀਨੀਓ ਮਾਡਲ) ਨਿਊਕਲੀਔਨਾਂ ਅਤੇ ਮੀਜ਼ੌਨਾਂ ਦੀ ਗੁੰਝਲਦਾਰ ਪ੍ਰਭਾਵੀ ਥਿਊਰੀ ਹੈ ਜੋ ਸੁਪਰਚਾਲਕਤਾ ਦੀ BCS ਥਿਊਰੀ ਵਿੱਚ ਇਲੈਕਟ੍ਰੌਨਾਂ ਤੋਂ ਕੂਪਰ ਜੋੜਿਆਂ (ਪੇਅਰਾਂ) ਦੀ ਬਣਤਰ ਦੇ ਸਮਾਂਤਰ, ਚੀਰਲ ਸਮਰੂਪਤਾ ਵਾਲੇ ਪਰਸਪਰ ਕ੍ਰਿਆ ਕਰ ਰਹੇ ਡੀਰਾਕ ਫਰਮੀਔਨਾਂ ਤੋਂ ਬਣਦੀ ਹੈ। ਥਿਊਰੀ ਦੀ ਗੁੰਝਲਦਾਰਤਾ ਹੋਰ ਕੁਦਰਤੀ ਬਣ ਜਾਂਦੀ ਹੈ ਕਿਉਂਕਿ ਹੁਣ ਇਹ ਕੁਆਂਟਮ ਕ੍ਰੋਮੋਡਾਇਨਾਮਿਕਸ ਦੀ ਅਜੇ ਹੋਰ ਮੁਢਲੀ ਥਿਊਰੀ ਦੀ ਇੱਕ ਨਿਮਨ-ਊਰਜਾ ਲੱਗਪੱਗਤਾ ਦੇ ਤੌਰ ਤੇ ਦੇਖੀ ਜਾਂਦੀ ਹੈ, ਜੋ ਨਿਮਨ-ਊਰਜਾਵਾਂ ਉੱਤੇ ਪਰਚਰਬੇਟਿਵ ਤੌਰ ਤੇ ਕੰਮ ਨਹੀਂ ਕਰਦੀ।

ਇਸ ਮਾਡਲ ਨੇ ਠੋਸ ਅਵਸਥਾ ਥਿਊਰੀ ਦੀ ਵੱਖਰੀ ਫੀਲਡ ਦੁਆਰਾ ਬਹੁਤ ਜਿਆਦਾ ਪ੍ਰੇਰਣਾ ਲਈ ਹੈ, ਵਿਸ਼ੇਸ਼ ਕਰਕੇ 1957 ਦੇ BCS ਸਫਲਤਾ ਤੋਂ। ਨਾਂਬੂ-ਜੋਨਾ-ਲਾਸੀਨੀਓ ਮਾਡਲ ਦੇ ਪਹਿਲੇ ਖੋਜੀ, ਯੋਇਚ੍ਰੋ ਨਾਂਬੂ ਨੇ ਸੁਪਰਚਾਲਕਤਾ ਦੀ ਥਿਊਰੀ ਪ੍ਰਤਿ ਵੀ ਜਰੂਰੀ ਤੌਰ ਤੇ ਯੋਗਦਾਨ ਪਾਇਆ ਹੈ, ਯਾਨਿ ਕਿ, “ਨਾਂਬੂ ਫਾਰਮੂਲਾ ਬਣਤਰ ਵਿਓਂਤਬੰਦੀ” ਰਾਹੀਂ। ਦੂਜਾ ਖੋਜੀ ਜੀਓਵਾੱਨੀ ਜੋਨਾ-ਲਾਸੀਨੀਓ ਸੀ। ਮਾਡਲ ਪੇਸ਼ ਕਰਨ ਵਾਲੇ ਵਿਦਵਾਨਾਂ ਦਾ ਸਾਂਝਾ ਪੇਪਰ 1961 ਵਿੱਚ ਦਿਸਿਆ। ਅਗਲੇ ਪੇਪਰ ਵਿੱਚ ਚੀਰਲ ਸਮਰੂਪਤਾ ਟੁੱਟਣਾ, ਆਇਸੋਸਪਿੱਨ ਅਤੇ ਸਟ੍ਰੇਂਜਨੈੱਸ ਸ਼ਾਮਿਲ ਸੀ।

ਇਹ ਮਾਡਲ ਕਾਫੀ ਤਕਨੀਕੀ ਹੈ, ਬੇਸ਼ੱਕ ਸਮਰੂਪਤਾ ਸਿਧਾਂਤਾਂ ਉੱਤੇ ਲਾਜ਼ਮੀ ਤੌਰ ਤੇ ਅਧਾਰਿਤ ਹੈ। ਇਹ ਚਾਰ-ਫਰਮੀਔਨ ਪਰਸਪਰ ਕ੍ਰਿਆਵਾਂ ਦੀ ਮਹੱਤਵਪੂਰਨ ਦੀ ਇੱਕ ਉਦਾਹਰਨ ਹੈ ਅਤੇ ਅਯਾਮਾਂ ਦੀ ਇਵਨ (ਜਿਸਤ, ਸਮ) ਸੰਖਿਆ ਵਾਲੇ ਇੱਕ ਸਪੇਸਟਾਈਮ ਵਿੱਚ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤੀ ਜਾਂਦਾ ਹੈ। ਇਹ ਅਜੇ ਵੀ ਮਹੱਤਵਪੂਰਨ ਹੈ ਅਤੇ ਪ੍ਰਮੁੱਖ ਤੌਰ ਤੇ ਕੁਆਂਟਮ ਕ੍ਰੋਮੋਡਾਇਨਾਮਿਕਸ ਲਈ ਇੱਕ ਪ੍ਰਭਾਵੀ ਭਾਵੇਂ ਕਠਿਨ, ਨਿਮਨ ਉਰਜਾ ਬਦਲ (ਸਬਸਟੀਊਟ) ਦੇ ਤੌਰ ਤੇ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ।

ਫਰਮੀਔਨ ਪਰਸਪਰ ਕ੍ਰਿਆਵਾਂ ਤੋਂ ਕਿਸੇ ਕੰਡੈੱਨਸੇਟ ਦੀ ਡਾਇਨਾਮਿਕਲ ਰਚਨਾ ਨੇ ਟੈਕਨੀਕਲਰ ਅਤੇ ਟੌਪ-ਕੁਆਰਕ ਕੰਡੈੱਨਸੇਟ ਵਰਗੀ ਇਲੈਕਟ੍ਰੋਵੀਕ ਸਮਰੂਪਤਾ ਦੇ ਟੁੱਟਣ ਦੀਆਂ ਕਈ ਥਿਊਰੀਆਂ ਨੂੰ ਪ੍ਰੇਰਣਾ ਦਿੱਤੀ ਹੈ।

Remove ads

ਗਣਿਤ

ਇੱਕ-ਫਲੇਵਰ ਮਾਮਲੇ ਨਾਲ ਪਹਿਲਾਂ ਸ਼ੁਰੂ ਕਰਦੇ ਹੋਏ, ਲਗਰਾਂਜੀਅਨ ਡੈੱਨਸਟੀ ਇਹ ਹੁੰਦੀ ਹੈ,

ਰਕਮ ਜੋ λ ਦੇ ਅਨੁਪਾਤ ਵਿੱਚ ਹੁੰਦੀ ਹੈ, ਚਾਰ-ਫਰਮੀਔਨ ਪਰਸਪਰ ਕ੍ਰਿਆਵਾਂ ਹਨ, ਜੋ BCS ਥਿਊਰੀ ਦੀ ਸਮਾਂਤਰਤਾ ਕਰਦੀ ਹੈ। ਇਸ ਮਾਡਲ ਦੀ ਸੰਸਾਰਿਕ (ਗਲੋਬਲ) ਸਮਰੂਪਤਾ (ਸਮਿੱਟਰੀ) U(1)Q×U(1)χ ਹੁੰਦੀ ਹੈ ਜਿੱਥੇ Q ਡੀਰਾਕ ਫਰਮੀਔਨ ਦੀ ਸਧਾਰਨ ਤਬਦੀਲੀ ਹੈ ਅਤੇ χ ਚੀਰਲ ਤਬਦੀਲੀ ਹੁੰਦੀ ਹੈ।

ਚੀਰਲ ਸਮਰੂਪਤਾ ਕਾਰਨ ਕੋਈ ਵੀ ਸ਼ੁੱਧ ਪੁੰਜ ਰਕਮ ਨਹੀਂ ਹੈ। ਫੇਰ ਵੀ, ਇੱਕ ਚੀਰਲ ਕੰਡੈਨੱਸੇਟ (ਪਰ ਕੋਈ ਕਨਫਾਈਨਮੈਂਟ/ਹੱਦਬੰਦੀ ਨਹੀਂ ਹੁੰਦੀ) ਹੋਵੇਗੀ ਜੋ ਇੱਕ ਪ੍ਰਭਾਵੀ ਪੁੰਜ ਰਕਮ ਅਤੇ ਚੀਰਲ ਸਮਰੂਪਤਾ ਦੀ ਤੁਰੰਤ ਸਮਰੂਪਤਾ ਟੁੱਟਣ ਵੱਲ ਲੈ ਕੇ ਜਾਂਦੀ ਹੈ, ਪਰ ਚਾਰਜ ਸਮਰੂਪਤਾ ਨੂੰ ਨਹੀਂ।

N ਫਲੇਵਰਾਂ ਅਤੇ ਲੈਟਿਨ ਅੱਖਰਾਂ a, b, c ਦੁਆਰਾ ਪ੍ਰਸਤੁਤ ਕੀਤੇ ਜਾਂਦੇ ਫਲੇਵਰ ਸੂਚਕਾਂਕਾਂ ਨਾਲ, ਲਗਰਾਂਜੀਅਨ ਡੈੱਨਸਟੀ ਇਹ ਬਣ ਜਾਂਦੀ ਹੈ,

ਚੀਰਲ ਸਮਰੂਪਤਾ ਇੱਕ ਸ਼ੁੱਧ ਪੁੰਜ ਰਕਮ ਤੇ ਪਾਬੰਧੀ ਲਗਾਉਂਦੀ ਹੈ, ਪਰ ਚੀਰਲ ਕੰਡੈੱਨਸੇਟ ਹੋ ਸਕਦੇ ਹਨ। ਇੱਥੇ ਗਲੋਬਲ ਸਮਰੂਪਤਾ SU(N)L×SU(N)R× U(1)Q × U(1)χ ਹੁੰਦੀ ਹੈ ਜਿੱਥੇ SU(N)L×SU(N)R ਕ੍ਰਮਵਾਰ ਖੱਬੇ –ਹੱਥ ਵਾਲੇ ਫਲੇਵਰਾਂ ਅਤੇ ਸੱਜੇ ਹੱਥ ਵਾਲੇ ਫਲੇਵਰਾਂ ਉੱਤੇ ਕ੍ਰਿਆ ਕਰਨ ਵਾਲੀ ਚੀਰਲ ਸਮਰੂਪਤਾ ਹੈ (ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ, ਖੱਬੇ ਹੱਥ ਵਾਲੇ ਅਤੇ ਸੱਜੇ ਹੱਥ ਵਾਲੇ ਫਲੇਵਰਾਂ ਦਰਮਿਆਨ ਕੋਈ ਵੀ ਨਿਊਟ੍ਰਲ ਮੇਲਜੋਲ ਨਹੀਂ ਹੁੰਦਾ), U(1)Q ਡੀਰਾਕ ਚਾਰਜ ਹੁੰਦਾ ਹੈ, ਜਿਸਨੂੰ ਕਦੇ ਕਦੇ ਬੇਰੌਨ ਨੰਬਰ ਵੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਅਤੇ U(1)χ ਐਕਸੀਅਲ (ਧਰੁਵੀ) ਚਾਰਜ ਹੁੰਦਾ ਹੈ। ਜੇਕਰ ਕੋਈ ਚੀਰਲ ਕੰਡੈੱਨਸੇਟ ਬਣਦਾ ਹੈ, ਤਾਂ ਚੀਰਲ ਸਮਰੂਪਤਾ ਇੱਕ ਤਿਰਛੇ (ਡਾਇਆਗਨਲ) ਸਬਗਰੁੱਪ SU(N) ਵਿੱਚ ਤੁਰੰਤ ਟੁੱਟ ਜਾਂਦੀ ਹੈ ਕਿਉਂਕਿ ਕੰਡੈੱਨਸੇਟ ਖੱਬੇ ਹੱਥ ਵਾਲੇ ਅਤੇ ਸੱਜੇ ਹੱਥ ਵਾਲੇ ਫਲੇਵਰਾਂ ਦੀ ਪੇਅਰਿੰਗ (ਜੌੜਾਪਣ) ਵੱਲ ਲਿਜਾਂਦਾ ਹੈ। ਧਰੁਵੀ (ਐਕਸੀਅਲ) ਚਾਰਜ ਵੀ ਤੁਰੰਤ ਹੀ ਟੁੱਟ ਜਾਂਦਾ ਹੈ।

ਟੁੱਟੀ ਹੋਈ ਸਮਰੂਪਤਾ ਪੁੰਜਹੀਣ ਸੂਡੋਸਕੇਲਰ ਬੋਸੌਨਾਂ ਨੂੰ ਜਨਮ ਦਿੰਦੀ ਹੈ ਜੋ ਕਦੇ ਕਦੇ ਕਦੇ ਪਾਈਔਨ ਕਹੇ ਜਾਂਦੇ ਹਨ। ਦੇਖੋ ਗੋਲਡਸਟੋਨ ਬੋਸੌਨ

Remove ads

ਉਪਯੋਗ

ਜਿਵੇਂ ਦਰਸਾਇਆ ਗਿਆ ਹੈ, ਇਹ ਮਾਡਲ ਕਦੇ ਕਦੇ ਚੀਰਲ ਹੱਦ ਅੰਦਰ ਕੁਆਂਟਮ ਕ੍ਰੋਮੋਡਾਇਨਾਮਿਕਸ ਦੇ ਫੀਨੋਮੀਨੌਲੌਜੀਕਲ ਮਾਡਲ ਦੇ ਤੌਰ ਤੇ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ। ਫੇਰ ਵੀ, ਜਦੋਂਕਿ ਚੀਰਲ ਸਮਰੂਪਤਾ ਟੁੱਟਣਾ ਅਤੇ ਚੀਰਲ ਕੰਡੈੱਨਸੇਟਾਂ ਦੇ ਮਾਡਲ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਫੇਰ ਵੀ ਇਹ ਕਨਫਾਇਨਮੈਂਟ (ਰੋਕਥਾਮ) ਨੂੰ ਮਾਡਲਬੱਧ ਨਹੀਂ ਕਰਦਾ। ਇਸਦੇ ਨਾਲ ਹੀ, ਇਸ ਮਾਡਲ ਵਿੱਚ ਧਰੁਵੀ ਸਮਰੂਪਤਾ ਤੁਰੰਤ ਟੁੱਟ ਜਾਂਦੀ ਹੈ, ਜੋ ਨਿਯਮਿਤ ਤਰੀਕੇ ਨਾਲ ਸਮਰੂਪਤਾ ਟੁੱਟਣ ਵਾਲੇ ਕੁਆਂਟਮ ਕ੍ਰੋਮੋਡਾਇਨਾਮਿਕਸ ਤੋਂ ਉਲਟ ਇੱਕ ਪੁੰਜਹੀਣ ਗੋਲਡਸਟੋਨ ਬੋਸੌਨ ਨੂੰ ਜਨਮ ਦਿੰਦੀ ਹੈ,

ਕਿਉਂਕਿ ਨਾਂਬੂ-ਜੋਨਾ-ਲਾਸੀਨੀਓ ਮਾਡਲ ਚਾਰ ਸਪੇਸਟਾਈਮ ਅਯਾਮਾਂ ਵਿੱਚ ਗੈਰ-ਪੁਨਰ-ਮਾਨਕੀਕਰਨਯੋਗ ਹੈ, ਇਸਲਈ ਇਹ ਥਿਊਰੀ ਸਿਰਫ ਇੱਕ ਪ੍ਰਭਾਵੀ ਫੀਲਡ ਥਿਊਰੀ ਹੀ ਹੋ ਸਕਦੀ ਹੈ ਜੋ UV ਸੰਪੂਰਣਾ ਦੀ ਮੰਗ ਕਰਦੀ ਹੈ।

Remove ads
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads