ਹਿਲਬਰਟ ਸਪੇਸ
From Wikipedia, the free encyclopedia
Remove ads
Remove ads
ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਦੇ ਤੇਜ਼ ਵਿਕਾਸ ਨੇ ਇੱਕ ਰਹੱਸਮਈ ਗਣਿਤਿਕ ਢਾਂਚੇ ਦੇ ਵਿਕਾਸ ਦੀ ਮੰਗ ਕੀਤੀ। ਭਾਵੇਂ ਤੇਜ਼ ਵਿਕਾਸ ਕਰਕੇ ਅਜਿਹੇ ਪਲ ਆਏ ਸਨ, ਜਦੋਂ ਇੰਨੇ ਕਠਿਨ ਫਾਰਮੂਲੇ ਨਹੀਂ ਵਰਤੇ ਜਾਂਦੇ ਸਨ, ਇਹ ਫਾਰਮੂਲੇ ਬਾਦ ਵਿੱਚ ਸੈੱਟ ਕੀਤੇ ਗਏ ਅਤੇ ਗਣਿਤਿਕ ਦ੍ਰਿਸ਼ਟੀਕੋਣ ਨਾਲ ਕਠਿਨਤਾ ਨਾਲ ਸਾਬਤ ਕੀਤੇ ਗਏ।

ਹਿਲਬਰਟ ਸਪੇਸ ਵਿੱਚ ਓਪਰੇਟਰਾਂ ਦੇ ਵਿਕਾਸ ਰਾਹੀਂ, ਪਹਿਲਾ ਸੰਸਲੇਸ਼ਣ ਜੌਹਨ ਵੌਨ ਨਿਊਮਨ ਦੁਆਰਾਂ ਮਹਿਸੂਸ ਕੀਤਾ ਗਿਆ। ਇੱਕ ਹਿਲਬਰਟ ਸਪੇਸ ਕਿਸੇ ਵੈਕਟਰ ਸਪੇਸ ਦੇ ਵਿਚਾਰ ਦਾ ਸਰਵਸਧਾਰੀਕਰਣ ਹੈ ਜੋ ਨਿਸ਼ਚਿਤ ਅਯਾਮਾਂ ਤੱਕ ਹੀ ਸੀਮਤ ਨਹੀਂ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ, ਇਹ ਇੱਕ ਅੰਦਰੂਨੀ ਗੁਣਨਫਲ ਸਪੇਸ ਹੁੰਦੀ ਹੈ, ਜਿਸਦਾ ਅਰਥ ਹੈ ਕਿ ਇਸ ਵਿੱਚ ਦੂਰੀ ਅਤੇ ਐਂਗਲਾਂ ਦੀ ਧਾਰਨਾ ਹੁੰਦੀ ਹੈ- ਖਾਸਕਰ ਕੇ ਔਰਥੋਗਨਲਟੀ ਦੀ ਧਾਰਨਾ। ਹੋਰ ਤਾਂ ਹੋਰ, ਇਹ ਇੱਕ ਸੰਪੂਰਣਤਾ ਦੀ ਸ਼ਰਤ ਤੇ ਵੀ ਖਰੀ ਉਤਰਦੀ ਹੈ ਜੋ ਇੱਛਾ ਮੁਤਾਬਿਕ ਹੱਦਾਂ ਦੀ ਹੋਂਦ ਯਕੀਨੀ ਬਣਾਉਂਦੀ ਹੈ। ਭਾਵੇਂ ਇਹ ਥਿਊਰੀ ਪੂਰੀ ਤਰਾਂ ਸਹੀ ਹੈ, ਫੇਰ ਵੀ ਵੌਨ ਨਿਊਮਨ ਦੀ ਪਹੁੰਚ ਹੋਰ ਆਮ ਸਪੇਸਾਂ ਤੇ ਵਿਚਾਰ ਨਹੀਂ ਕਰਦੀ- ਜਿਵੇਂ ਡਿਸਟ੍ਰੀਬਿਊਸ਼ਨ ਸਪੇਸਾਂ- ਜੋ, ਭਾਵੇਂ ਥਿਊਰੀ ਦੀ ਵਿਆਖਿਆ ਵਿੱਚ ਸਿੱਧੇ ਤੌਰ ਤੇ ਸਬੰਧਤ ਨਹੀਂ ਹਨ, ਤਾਂ ਵੀ ਉਹਨਾਂ ਨੂੰ ਅੱਖੋਂ ਉਹਲੇ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ ਜੇਕਰ ਗਣਿਤਿਕ ਫਾਰਮੂਲਾ ਬਣਤਰਾਂ ਦੇ ਕਠਿਨ ਬਿੰਦੂਆਂ ਨੂੰ ਸਮਝਣਾ ਹੋਵੇ। ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਦੀ ਇਹ ਵਿਸ਼ਾਲ ਬਣਤਰ, ਜੋ ਹਿਲਬਰਟ ਸਪੇਸ ਨੂੰ ਡਿਸਟ੍ਰੀਬਿਊਸ਼ਨ ਦੀ ਥਿਊਰੀ ਨਾਲ ਮਿਲਾਉਂਦੀ ਹੈ, ਰੂਸੀ ਗਣਿਤ ਸ਼ਾਸਤਰੀ ਇਸਰੇਲ ਮੌਸੀਵਿਚ ਗਲਫਾਂਡ (ਜਨਮ 1913) ਦੁਆਰਾ ਕੁੱਝ ਦੇਰ ਬਾਦ ਬਣਾਈ ਗਈ। ਉਸਨੇ ਪ੍ਰਸਿੱਧ ਰਿਜਿੱਡ ਹਿਲਬਰਟ ਸਪੇਸ, ਜਾਂ ਗਲਫਾਂਡ ਟਰਿਪਲੈੱਟ ਪੇਸ਼ ਕੀਤੀ। [1]
Remove ads
ਪਰਿਭਾਸ਼ਾ

ਰਿਜਿੱਡ ਹਿਲਬਰਟ ਸਪੇਸ ਅਸਲ ਵਿੱਚ ਕੀ ਹੈ? ਇੱਕ ਰਿਜਿੱਡ ਹਿਲਬਰਟ ਸਪੇਸ ਇੱਕ ਅਜਿਹਾ ਸੈੱਟ ਹੁੰਦੀ ਹੈ ;
- ਜਿਸ ਵਿੱਚ ਇੱਕ ਰੇਖਿਕ (ਲੀਨੀਅਰ) ਸਪੇਸ ਦੀ ਬੀਜ ਗਣਿਤਿਕ (ਅਲਜਬਰਿਕ) ਬਣਤਰ ਹੁੰਦੀ ਹੈ
- ਇਸ ਵਿੱਚ ਇੱਕ ਨਿਊਕਲੀਅਰ ਟੌਪੌਲੌਜੀ ਜਿਸ ਦੇ ਹਿਸਾਬ ਨਾਲ ਸੰਪੂਰਣਤਾ Φ’ ਦਿੰਦੀ ਹੈ। (ਟੌਪੌਲੌਜੀ ਆਂਕੜਿਆਂ ਦੇ ਅਕਾਰ ਜਾਂ ਸ਼ਕਲ ਵਿੱਚ ਨਿਰੰਤਰ ਤਬਦੀਲੀ ਤੋਂ ਪ੍ਰਭਾਵਿਤ ਹੋਏ ਬਗੈਰ ਰੇਖਾਗਣਿਤ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਅਤੇ ਸਥਾਨਿਕ ਸਬੰਧਾਂ ਦੇ ਅਧਿਐਨ ਨੂੰ ਕਿਹਾ ਜਾਂਦਾ ਹੈ)
- ਇਸ ਵਿੱਚ ਇੱਕ ਦੂਜੀ ਟੌਪੌਲੌਜੀ ਕਿਸੇ ਸਕੇਲਰ ਗੁਣਨਫਲ ਰਾਹੀਂ ਫਿੱਟ ਹੁੰਦੀ ਹੈ ਜਿਸਦੇ ਹਿਸਾਬ ਨਾਲ ਇਹ ਰੇਖਿਕ (ਲੀਨੀਅਰ) ਸਪੇਸ ਇੱਕ ਹਿਲਬਰਟ ਸਪੇਸ H ਰਚਣ ਲਈ ਪੂਰੀ ਹੋ ਜਾਂਦੀ ਹੈ।
- ਇਸ ਵਿੱਚ ਇੱਕ ਤੀਜੀ ਟੌਪੌਲੌਜੀ ਹੁੰਦੀ ਹੈ, ਜਿਸਨੂੰ Φ ਦੀ ਦੋਹਰੀ ਸਪੇਸ Φ’ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।[2]

ਟੌਪੌਲੌਜੀ

ਇੱਥੇ ਟੌਪੌਲੌਜੀ ਦੀਆਂ ਕੁੱਝ ਮੁਢਲੀਆਂ ਧਾਰਨਾਵਾਂ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਗਿਆ ਹੈ।
ਮੰਨ ਲਓ X ਕੋਈ ਸੈੱਟ ਹੈ ਅਤੇ p(X) = {Y| Y⊂ X} ਇਸਦੇ ਸਾਰੇ ਸਬ-ਸੈੱਟ ਹੋਣ। p(X) ਦਾ ਇੱਕ ਸਬ-ਸੈੱਟ T ਹੇਠਾਂ ਲਿਖੀਆਂ ਸ਼ਰਤਾਂ ਪੂਰੀਆਂ ਕਰਨ ਤੇ ਹੀ ਇਸਦੀ (X ਦੀ) ਇੱਕ ਟੌਪੌਲੌਜੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ;
- ਖਾਲੀ ਸੈੱਟ O ⊂ T ਅਤੇ X, ਦੋਵੇਂ T ਦੇ ਐਲੀਮੈਂਟ ਹੋਣ।
- T ਦੇ ਮਨਚਾਹੇ ਬਹੁਤ ਸਾਰੇ ਐਲੀਮੈਂਟਾਂ ਦੀ ਯੂਨੀਅਨ ਵੀ T ਦਾ ਇੱਕ ਐਲੀਮੈਂਟ ਹੋਵੇ।
- T ਦੇ ਐਲੀਮੈਂਟਾਂ ਦੀ ਇੱਕ ਨਿਸ਼ਚਿਤ ਸੰਖਿਆ ਦਾ ਕੋਈ ਵੀ ਇੰਟਰਸੈਕਸ਼ਨ (ਕਾਟ) ਵੀ T ਦਾ ਇੱਕ ਐਲੀਮੈਂਟ ਹੋਵੇ।
ਜੇਕਰ T, X ਉੱਤੇ ਇੱਕ ਟੌਪੌਲੌਜੀ ਹੋਵੇ, ਤਾਂ T ਦੇ ਨਾਲ ਇਕੱਠੇ ਲਏ ਗਏ X ਨੂੰ (ਜਿਸਨੂੰ ਜੋੜੇ ਦੇ ਰੂਪ ਵਿੱਚ (X, T) ਨਾਲ ਵੀ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ), ਇੱਕ ਟੌਪੌਲੌਜੀਕਲ ਸਪੇਸ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। T ਵਿਚਲੇ ਕਿਸੇ ਸੈੱਟ ਨੂੰ ਇੱਕ ਓਪਨ ਸੈੱਟ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।[2]
Remove ads
ਨੋਟਸ
ਬਾਹਰੀ ਲਿੰਕ
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads