Chemia kwantowa

Z Wikipedii, wolnej encyklopedii

Chemia kwantowa – dziedzina z pogranicza fizyki i chemii, która stosuje mechanikę kwantową i kwantową teorię pola do opisu atomowych i molekularnych układów będących przedmiotem zainteresowania chemii.

Podstawowym równaniem nierelatywistycznej chemii kwantowej jest równanie Schrödingera. Głównym zadaniem chemii kwantowej jest rozwijanie metod rozwiązywania równania Schrödingera opisującego atomy i cząsteczki, najdokładniej jak jest to możliwe, oraz zastosowanie tych metod w praktycznych obliczeniach. W tym celu chemicy kwantowi rozwinęli szereg matematycznych i numerycznych metod.

Efekty relatywistyczne w chemii kwantowej uwzględnia się zastępując równanie Schrödingera równaniem Diraca, albo wprowadzając poprawki, wynikające z relatywistycznej mechaniki kwantowej i kwantowej teorii pola, przy użyciu teorii perturbacji (rachunku zaburzeń), lub metody wariacyjnej.

Punktem startowym przeważającej części obliczeń w chemii kwantowej jest przybliżenie Borna-Oppenheimera. Przybliżenie to pozwala odseparować dynamikę ruchu elektronów i jąder oraz podzielić obliczenia na dwa kroki. W pierwszy kroku rozwiązuje się równanie Schrödingera (lub Diraca) z elektronowym hamiltonianem, otrzymując zależność energii elektronowej w funkcji współrzędnych atomów. W drugim kroku rozwiązuje się równanie Schrödingera dla ruch jąder z potencjałem uzyskanym w pierwszym kroku. W praktyce główny nacisk w chemii kwantowej kładzie się na rozwiązanie problemu elektronowego, ponieważ niedokładność tych obliczeń wpływa głównie na rozbieżności pomiędzy danymi doświadczalnymi a eksperymentalnymi.

Dziedzinę, która wykorzystuje metody chemii kwantowej (jak również klasyczne lub półklasyczne teorie), a nie zajmuje się rozwijaniem metod matematycznych i numerycznych, nazywa się chemią obliczeniową.

Oops something went wrong: