Najlepsze pytania
Chronologia
Czat
Perspektywa

Deorbitacja

sprowadzenie statku kosmicznego z orbity wgłąb atmosfery Z Wikipedii, wolnej encyklopedii

Remove ads

Deorbitacja – sprowadzenie statku kosmicznego z orbity w gęste warstwy atmosfery. Początek deorbitacji powoduje praca silnika rakietowego o wstecznym ciągu, czyli o ciągu ze zwrotem przeciwnym do zwrotu prędkości statku kosmicznego. Impuls całkowity silnika rakietowego niezbędny do inicjacji deorbitacji zależy od masy statku kosmicznego i wysokości orbity.

Celem deorbitacji może być bezpieczne lądowanie statku kosmicznego na ziemi lub wodowanie na wodzie:

lub spalenie statku kosmicznego w gęstych warstwach atmosfery:

Remove ads

Deorbitacja w programie Merkury

Thumb
Kapsuła Merkury

Do deorbitacji kapsuły Merkury służyły trzy silniki hamujące na paliwo stałe, pracowały 10 sekund po czym zostawały odrzucane odsłaniając osłonę cieplną. Odpalenie silników ustawionych w kierunku przeciwnym do kierunku ruchu kapsuły spowalniało ją, dzięki czemu obniżała swój lot by w efekcie wejść w górne warstwy atmosfery i rozpocząć hamowanie aerodynamiczne.

Na wysokości 6400 metrów otwierał się spadochron hamujący, dodatkowo spowalniając lot. Spadochron główny otwierał się na wysokości 3000 metrów. By zmniejszyć przeciążenie w chwili uderzenia w wodę, kapsuła była wyposażona w perforowaną poduszkę powietrzną z włókna szklanego zamontowaną między kapsułą a osłoną termiczną. Pod wpływem ciężaru odrzucanej osłony termicznej rozkładała się tuż przed wodowaniem i zasysała powietrze. Dzięki temu, w chwili uderzenia w wodę na astronautę działało przeciążenie 15 g, a bez niej osiągałoby nawet 50 g[1].

Do ochrony kapsuł początkowo stosowano berylowe osłony termiczne. Później jednak zmieniono je na bardziej efektywne osłony ablacyjne. Również kolor kapsuły podyktowany był ochroną termiczną. Dzięki matowej czerni łatwo oddawały ciepło[1].

Remove ads

Deorbitacja w programie Gemini

Program Gemini był mostem łączącym programy Merkury i Apollo. Kapsuła użyta w tym programie służyła między innymi do doskonalenia deorbitacji. Statek kosmiczny Gemini składał się z modułu załogowego (reentry module) i adaptera (adapter module). Przed wejściem do atmosfery statek kosmiczny był orientowany większą podstawą (adapterem) w kierunku ruchu. Przy podstawie adaptera o mniejszej średnicy przedłużeniem był moduł załogowy. Natomiast przy podstawie o większej średnicy znajdowało się 10 silników systemu (OAMS) Orbit Attitude and Maneuver System. Część adaptera z silnikami OAMS przed wejściem do atmosfery była odłączana i odrzucana odsłaniając cztery silniki rakietowe na paliwo stałe o ciągu wynoszącym 11 070 N każdy. Uruchomienie tych silników rozpoczynało hamowanie kapsuły, a w konsekwencji deorbitację. Następnie zostawała odłączana i odrzucana pozostała część adaptera odsłaniając osłonę cieplną przy podstawie modułu załogowego.

Remove ads

Deorbitacja stacji Mir

W przypadku likwidacji rosyjskiej stacji kosmicznej Mir, manewr wyhamowania prędkości i deorbitacji nastąpił na skutek zadziałania silników statku kosmicznego Progress M1-5, który był przyczepiony do stacji Mir.

Deorbitacja statku kosmicznego Sojuz

Deorbitacja rosyjskiego statku kosmicznego Sojuz wygląda podobnie jak deorbitacja amerykańskiego statku kosmicznego Merkury. Po odłączeniu lądownika i modułu serwisowego od modułu orbitalnego, w ściśle uprzednio zaplanowanym punkcie na orbicie uruchamiane są silniki hamujące modułu serwisowego statku Sojuz. Po wypaleniu paliwa i zainicjowaniu deorbitacji moduł serwisowy jest odrzucany.
Animacja deorbitacji statku kosmicznego Sojuz TK-2

Obecnie moduł orbitalny Sojuza jest odrzucany po zapłonie hamującym. Jest to działanie wprowadzone po anomaliach z powrotem pojazdu Sojuz TM-5 w 1988.

Thumb
Zbliżenie tylnej części wahadłowca Discovery, wraz z widocznymi silnikami manewrowymi OMS
Remove ads

Deorbitacja wahadłowca

Do operacji deorbitacji wahadłowca były używane obydwa silniki manewrowe OMS. Dane do deorbitacji były opracowane na Ziemi i przesyłane do komputerów pokładowych (GPC) poprzez kanał transmisji danych[2]. Przed uruchomieniem silników manewrowych załoga ustawiała wahadłowiec za pomocą systemu sterowania reakcyjnego tyłem w kierunku ruchu. 2,5 minutowa praca silników manewrowych OMS inicjowała deorbitację. Następnie załoga za pomocą systemu sterowania reakcyjnego, sterując ręcznie, ustawiała wahadłowiec w położeniu prawidłowym do wejścia w atmosferę, dziobem w kierunku ruchu.

Remove ads

Przypisy

Linki zewnętrzne

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads