5-celule
From Wikipedia, the free encyclopedia
Remove ads
În geometrie 5-celule[a] este un obiect din spațiul cvadridimensional mărginit de 5 celule tetraedrice. Este, de asemenea, cunoscut sub numele de C5.[1] Este 4-simplexul, politopul al lui Coxeter,[2] cel mai simplu posibil 4-politop regulat convex, fiind analogul 4-dimensional al tetraedrului din trei dimensiuni și al triunghiului din două dimensiuni. Un 5-celule este o piramidă 4-dimensională cu o bază tetraedrică.


Un 5-celule regulat este mărginit de 5 tetraedre regulate și este unul dintre cele șase 4-politopuri regulate convexe, având simbolul Schläfli {3,3,3}.
5-celule este o soluție la problema: Faceți 10 triunghiuri echilaterale, toate de aceeași dimensiune, folosind 10 bețișoare identice, unde fiecare latură a fiecărui triunghi este exact un singur bețișor”. Nu există nicio soluție în trei dimensiuni.
Anvelopa convexă a unui 5-celule și a dualului său (presupunând că sunt congruente) este 30-celule bisfenoidal, dual al 5-celule bitrunchiat.
Remove ads
Geometrie
5-celule este un politop autodual, iar figura vârfului său este un tetraedru. Intersecția sa maximă cu spațiul tridimensional este prisma triunghiulară. Unghiul diedru al acestuia este cos−1(14), sau aproximativ 75,52°.
Configurație
Matricea sa de configurație este prezentată mai jos. Rândurile și coloanele corespund vârfurilor, laturilor, fețelor și [[celulă (geometrie) |celulelor. Numerele diagonale spun câte din fiecare element apar în întregul 5-celule. Celelalte numere spun câte elemente ale coloanei apar în sau la elementul rândului. Deoarece este un politop autodual, matricea sa este identică după rotirea sa cu 180 de grade.[3]
Construcție
5-celule poate fi construit dintr-un tetraedru adăugând un al 5-lea vârf astfel încât să fie echidistant de toate celelalte vârfuri ale tetraedrului. (5-celule este o piramidă 4-dimensională cu o bază tetraedrică și patru fețe tetraedrice.)
Cel mai simplu set ce coordonate este: (2,0,0,0), (0,2,0,0), (0,0,2,0), (0,0,0,2), (φ,φ,φ,φ), cu lungimea laturii de 2√2, unde φ este secțiunea de aur.[4]
Coordonatele carteziene ale vârfurilor unui 5-celule regulat centrate în origine având lungimea laturii 2 și raza √1,6 sunt:
Alt set de coordonate centrate în origine în 4-spațiu poate fi văzut ca o hiperpiramidă cu o bază tetraedrică regulată în 3-spațiu, cu lungimea laturii 2√2 și raza √3,2:
Vârfurile unui 4-simplex (cu latura √2 și raza 1) pot fi construite mai simplu pe un hiperplan în 5-spațiu, ca permutări (distincte) de (0,0,0,0,1) sau (0,1,1,1,1); în aceste poziții este o fațetă, a unui 5-ortoplex (sau a 5-simplexului rectificat).
Elicea Boerdijk–Coxeter

Un 5-celule poate fi construit ca elicea Boerdijk–Coxeter a cinci tetraedre înlănțuite, pliate într-un inel 4-dimensional. Cele 10 fețe triunghiulare pot fi văzute într-o desfășurată 2D într-o pavare triunghiulară, cu 6 triunghiuri în jurul fiecărui vârf, deși plierea în 4-spațiu face ca laturile să coincidă. Laturile violete sunt poligonul Petrie al 5-celulei.
Proiecții
Un 5-celule se proiectează în planul Coxeter A4 ca un pentagon regulat și pentagramă.
Format:4-simplex Coxeter plane graphs
Remove ads
5-celule neregulat
Există multe forme de simetrie inferioară, inclusiv cele ale figurii vârfului politopului uniform:
Piramida tetraedrică este un caz particular al unui 5-celule, o piramidă poliedrică având drept bază un tetraedru regulat într-un hiperplan din 3-spațiu și drept apex punctul de deasupra hiperplanului. Cele patru laturi ale piramidei sunt formate din celule tetraedrice.
Multe 5-politopuri uniforme figuri ale vârfului piramida tetraedrică:
Alte 5-politopuri uniforme au figuri ale vârfurilor 5-celule neregulate. Simetria unei figuri a vârfului unui politop uniform este notată prin eliminarea nodurilor inelate ale diagramei Coxeter.
Remove ads
Compuși

Compusul de două 5-celule în configurație duală poate fi văzut ca proiecție în planul Coxeter A5, cu vârfurile și laturile celor două 5-celule colorate roșu, respectiv albastru. Acest compus are simetria de ordinul 240 [[3,3,3]]. Intersecția acestor două 5-celule este un 5-celule bitrunchiat uniform. ![]()
![]()
= ![]()
![]()
∩ ![]()
![]()
.
Acest compus poate fi văzut ca analogul 4D al hexagramei 2D {6⁄2} și al compusului de două tetraedre 3D.
Politopuri și faguri asociați
5 celule este cel mai simplu dintre cele 9 4-politopuri uniforme construite din grupul Coxeter [3,3,3].
Din secvența 4-politopurilor regulate fac parte: tesseractul {4,3,3} și 120-celule {5,3,3} din 4-spațiul euclidian și fagurele pavare hexagonală {6,3,3} din spațiul hiperbolic. Toate acestea au ca figură a vârfului tetraedrul.
5-celule este unul dintre cele 4-politopuri regulate cu celule tetraedrice, împreună cu 16-celule {3,3,5} și 600-celule {3,3,5} din spațiul euclidian. Fagurele tetraedric de ordinul 6 {3,3,6} din spațiul hiperbolic are și el celule tetraedrice.
Remove ads
Note explicative
- „5-celule” este o prescurtare a expresiei din limba română „un politop cvadridimensional format din 5 celule”, plural „două sau mai multe politopuri cvadridimesnsionale formate din câte 5 celule”, expresii care se acordă corespunzător, deci se vorbește despre „un/acel 5-celule”, nu „o/acea 5-celule”, respectiv „unele/acele 5-celule”', nu „unii/acei 5-celule”. La fel la celelalte politopuri ale căror nume este de forma „n-celule”.
Remove ads
Note
Bibliografie
Legături externe
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads





