Algebră booleană
subdomeniu al algebrei care tratează abstract operațiile logice From Wikipedia, the free encyclopedia
Remove ads
Algebra booleană, numită și logica booleană, este un subdomeniu al matematicii în care legile gândirii - obiectul de studiu al logicii clasice - sunt studiate cu ajutorul metodelor simbolice. Denumirea aceasta a fost dată în onoarea matematicianului englez George Boole, care în lucrarea The Laws of Thought („Legile gândirii”), publicată în 1853, a pus bazele acestei algebre.
Algebra booleană este formată din:
- elementele {0,1};
- 2 operații binare numite SAU și ȘI, notate simbolic cu + sau Ú și × sau U;
- 1 operație unară numită NU (negație), notată simbolic 0 sau O.
Remove ads
Operații
Operațiile se definesc astfel:
Axiome
Axiomele algebrei booleene sunt următoarele:
Fie o mulțime M compusă din elementele x1, x2,...xn, împreună cu operațiile × și +. Această mulțime formează o structură algebrică dacă:
Mulțimea M conține cel puțin 2 elemente distincte x1 1 x2 (x1,x2I M);
Pentru x1 I M, x2 I M avem:
x1 + x2 I M și x1 × x2 I M
Proprietăți
Operațiile × și + au următoarele proprietăți:
sunt comutative
x1 × x2 = x2 × x1
x1 + x2 = x2 + x1
sunt asociative
x1 × (x2 × x3) = (x1 × x2) × x3
x1 + (x2 + x3) = (x1 + x2) + x3
sunt distributive una față de cealaltă
x1 × (x2 + x3) = x1 × x2 + x1 × x3
x1 + (x2 × x3) = (x1 + x2) × (x1 + x3)
Ambele operații admit câte un element neutru cu proprietatea:
x1 + 0 = 0 + x1 = x1
x1 × 1 = 1 × x1 = x1
unde 0 este elementul nul al mulțimii, iar 1 este elementul unitate al mulțimii. Dacă mulțimea M nu conține decât două elemente, acestea trebuie să fie obligatoriu elementul nul 0 și elementul unitate 1; atunci pentru " x I M există un element unic notat cu x, cu proprietățile: x × x = 0 principiul contradicției x + x = 1 principiul terțului exclus x este inversul elementului x.
Notații
În definirea axiomatică a algebrei booleene s-au folosit diferite notații. In tabelul următor se dau denumirile și notațiile specifice folosite pentru diverse domenii (matematică, logică, tehnică).
Prima lege de compoziție
x1 + x2
Disjuncție
x1 Ú x2
SAU
x1 + x2
A doua lege de compoziție
x1 × x2
Conjuncție
x1 U x2
SI
x1 × x2
Elementul invers
x
Negare
Ox
NU
x
Vezi și
Bibliografie
- Crăciun, D., Logică și teoria argumentării, Editura Tehnică, București, 2000.
Legături externe
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads