Algebră booleană

subdomeniu al algebrei care tratează abstract operațiile logice From Wikipedia, the free encyclopedia

Remove ads

Algebra booleană, numită și logica booleană, este un subdomeniu al matematicii în care legile gândirii - obiectul de studiu al logicii clasice - sunt studiate cu ajutorul metodelor simbolice. Denumirea aceasta a fost dată în onoarea matematicianului englez George Boole, care în lucrarea The Laws of Thought („Legile gândirii”), publicată în 1853, a pus bazele acestei algebre.

Algebra booleană este formată din:

Remove ads

Operații

Operațiile se definesc astfel:

Mai multe informații ȘI, SAU ...

Axiome

Axiomele algebrei booleene sunt următoarele:

Fie o mulțime M compusă din elementele x1, x2,...xn, împreună cu operațiile × și +. Această mulțime formează o structură algebrică dacă:

Mulțimea M conține cel puțin 2 elemente distincte x1 1 x2 (x1,x2I M);

Pentru x1 I M, x2 I M avem:

x1 + x2 I M și x1 × x2 I M

Proprietăți

Operațiile × și + au următoarele proprietăți:

sunt comutative

x1 × x2 = x2 × x1

x1 + x2 = x2 + x1

sunt asociative

x1 × (x2 × x3) = (x1 × x2) × x3

x1 + (x2 + x3) = (x1 + x2) + x3

sunt distributive una față de cealaltă

x1 × (x2 + x3) = x1 × x2 + x1 × x3

x1 + (x2 × x3) = (x1 + x2) × (x1 + x3)

Ambele operații admit câte un element neutru cu proprietatea:

x1 + 0 = 0 + x1 = x1

x1 × 1 = 1 × x1 = x1

unde 0 este elementul nul al mulțimii, iar 1 este elementul unitate al mulțimii. Dacă mulțimea M nu conține decât două elemente, acestea trebuie să fie obligatoriu elementul nul 0 și elementul unitate 1; atunci pentru " x I M există un element unic notat cu x, cu proprietățile: x × x = 0 principiul contradicției x + x = 1 principiul terțului exclus x este inversul elementului x.

Notații

În definirea axiomatică a algebrei booleene s-au folosit diferite notații. In tabelul următor se dau denumirile și notațiile specifice folosite pentru diverse domenii (matematică, logică, tehnică).

Prima lege de compoziție

x1 + x2

Disjuncție

x1 Ú x2

SAU

x1 + x2

A doua lege de compoziție

x1 × x2

Conjuncție

x1 U x2

SI

x1 × x2

Elementul invers

x

Negare

Ox

NU

x

Vezi și

Bibliografie

  • Crăciun, D., Logică și teoria argumentării, Editura Tehnică, București, 2000.

Legături externe

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads