Paralelism (geometrie)

From Wikipedia, the free encyclopedia

Remove ads

În geometrie, paralelismul se referă la o proprietate relațională, în cadrul unui spațiu euclidian, a două sau mai multe subspații (de exemplu drepte sau plane). Presupusa existență și proprietățile dreptelor paralele formează baza axiomei paralelelor a lui Euclid. Două drepte într-un plan care nu se pot intersecta se numesc drepte paralele. Analog, într-un spațiu tridimensional, o dreaptă și un plan sau două plane pot fi paralele; în general, într-un spațiu euclidian n-dimensional, un spațiu m-dimensional și un spațiu n−1-dimensional (cu ) sunt paralele dacă nu au vectori în comun.

Pentru figura de stil, vedeți Paralelism sintactic.

În spații neeuclidiene, dreptele paralele sunt cele care se intersectează doar la limită la infinit.

Remove ads

Simbol

Simbolul pentru paralelism este . De exemplu arată că dreapta AB este paralelă cu dreapta CD.

În setul de caractere Unicode, semnele „paralel” și „neparalel” sunt alocate codurilor U+2225 (∥) și respectiv U+2226 (∦).

Remove ads

Paralelism euclidian

Thumb
Aşa cum arată marcajele, dreptele a şi b sunt paralele. Aceasta se poate demonstra arătând că secanta t produce unghiuri congruente.

Date fiind dreptele l și m, următoarele descrieri pentru m o definesc echivalent ca paralelă la dreapta l într-un spațiu euclidian:

  1. Toate punctele de pe dreapta m se află la exact aceeași distanță minimă de dreapta l (drepte echidistante).
  2. Dreapta m se află în același plan ca dreapta l dar nu se intersectează cu l (chiar și presupunând că dreptele se extind până la infinit în ambele direcții).
  3. Dreptele m și l sunt intersectate de o a treia dreaptă (o secantă) din același plan, iar unghiurile corespunzătoare intersecției cu secanta sunt egale. (Această afirmație este echivalentă cu axioma paralelelor a lui Euclid.)

Cu alte cuvinte, dreptele paralele trebuie să se afle în același plan, iar planele paralele trebuie să se afle în același spațiu tridimensional. O dreaptă poate fi paralelă cu un plan în același spațiu tridimensional.

Construcție

Cele trei definiții de mai sus duc la trei metode diferite de construire a dreptelor paralele.

Thumb
Problemă: Trageţi o dreaptă prin a paralelă la l.

O altă definiție a dreptelor paralele utilizată frecvent este aceea că două drepte sunt paralele dacă nu se intersectează, dar aceasta este valabilă doar într-un spațiu bidimensional.

Distanța între două drepte paralele

Întrucât o dreaptă paralelă este o dreaptă formată din puncte aflate la aceeași distanță față de cealaltă, atunci există o unică distanță între cele două drepte paralele. Date fiind ecuațiile a două drepte paralele neverticale:

distanța între cele două drepte se poate găsi rezolvând sistemul de ecuații liniare:

și sistemul:

pentru a obține coordonatele picioarelor unei perpendiculare pe cele două drepte. Soluția sistemelor este:

Introducând în formula distanței euclidiene rezultă:

...

adică:

De asemenea, dacă cele două drepte sunt

atunci distanța între ele poate fi formulată astfel:

Remove ads

Legături externe

  • Construcția unei linii paralele cu o paralelă dată, printr-un punct exterior (dat sau oarecare) acesteia, utilizând un compas și un liniar — la [Math Open References
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads