Лучшие вопросы
Таймлайн
Чат
Перспективы

Антиголоморфная функция

Из Википедии, свободной энциклопедии

Remove ads

Антиголоморфные функции (также называемые антианалитическими) — семейство функций, тесно связанных с голоморфными функциями.

Определение

Суммиров вкратце
Перспектива

Функция , определённая на открытом подмножестве комплексной плоскости, называется антиголоморфной, если её производная по существует во всех точках этого множества. Это равносильно условию

где — первая производная Виртингера. Этому условию можно придать вид, аналогичный условиям Коши — Римана:

где

Функция, зависящая одновременно от и , не является ни голоморфной, ни антиголоморфной.

Remove ads

Свойства

  • голоморфна в тогда и только тогда, когда антиголоморфна в .
  • функция антиголоморфна тогда и только тогда, когда её можно разложить по степеням в окрестности каждой точки её области определения.
  • голоморфна в тогда и только тогда, когда антиголоморфна в .
  • если функция одновременно голоморфна и антиголоморфна, то она постоянна на любой связной компоненте её области определения.
Remove ads

Литература

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads