Лучшие вопросы
Таймлайн
Чат
Перспективы

Блочно-ориентированные модели

Из Википедии, свободной энциклопедии

Блочно-ориентированные модели
Remove ads

Блочно-ориентированные модели — это представление нелинейных систем в виде различных комбинаций инерционных звеньев и нелинейных безынерционных математических элементов. Такое представление моделей позволяет связать в явном виде входные и выходные переменные объектов с различной структурой и степенью нелинейности. К таким системам относятся системы типа Гаммерштейна, Винера, Винера-Гаммерштейна, фильтра Заде, обобщенной модели Винера и Sm-системы.

Данные модели применяются при моделировании сложных экономических объектов[1], в области энергетики[2], нефтегазовой промышленности[3] и на других сложных технических объектах. Объектом исследования является нелинейный управляемый одномерный динамический объект с измеряемыми в дискретные моменты времени входом u(t) и выходом у(t).

При представлении нелинейных систем блочно-ориентированными моделями основные результаты в сфере структурной идентификации получены при идентификации дискретными и непрерывными моделями на определенных множествах блочно-ориентированных моделей, состоящих из разных модификаций моделей Гаммерштейна и Винера.

Thumb
Структура объекта идентификации

Свойства нелинейности и динамичности таких объектов в ряде случаев невозможно четко разделить. Для упрощения задачи исследуемый нелинейный динамический объект представляют в виде некоторой комбинации линейных динамических блоков и безынерционных нелинейных блоков [4].

Remove ads

Классы моделей и входных сигналов

Суммиров вкратце
Перспектива

Определение структуры модели осуществляется из следующего класса непрерывных блочно-ориентированных моделей: (1) где  — нелинейная статическая модель, и  — простая и обобщенная модели Гаммерштейна, и  — простая и обобщенная модели Винера,  — простая каскадная модель Винера-Гаммерштейна,  — расширенная модель Винера, и  — простая и обобщенная каскадные модели Винера-Гаммерштейна. Обозначим u(t) и y(t) — входная и выходная переменные, соответственно. Нелинейные статистические элементы, входящие в состав моделей, описываются полиномиальными функциями второй степени:

,  — постоянные коэффициенты, ,  — передаточные функции линейных динамических систем с оперативной форме, то есть р означает инерцию дифференцирования: .

Подразумевается, что линейные динамические звенья, входящие в состав класса блочно-ориентированных моделей, устойчивы, то есть корни их характеристических уравнений расположены в левой полуплоскости плоскости корней.

Remove ads

Основные модели множества L и их уравнения

Суммиров вкратце
Перспектива
Простая модель Гаммерштейна

Простая модель Гаммерштейна. Применяется, когда постоянная составляющая выходного периодического сигнала не зависит от изменения частоты входного воздействия.

Thumb
Обобщенная модель Гаммерштейна

Обобщенная модель Гаммерштейна. Применяется, когда постоянная составляющая выходного сигнала не зависит от изменения частоты входного воздействия. Ее различие от простой модели Гаммерштейна возможно по структурным особенностям модели.

Простая модель Винера

Простая модель Винера. Применяется, когда постоянная составляющая выходного периодического сигнала зависит от изменения частоты входного воздействия. Отношение амплитуды первой гармоники к амплитуде второй гармоники и разность между постоянной составляющей и амплитудой второй гармоники не зависят от частоты.

Thumb
Обобщенная модель Винера

Обобщенная модель Винера. Применяется, когда разность между постоянной составляющей и амплитудой второй гармоники не зависит от частоты, а отношение квадрата амплитуды первой гармоники к амплитуде второй гармоники зависит от частоты.

Простая каскадная модель Винера-Гаммерштейна

Простая каскадная модель Винера-Гаммерштейна. Применяется, когда разность между постоянной составляющей и амплитудой второй гармоники зависит от частоты.

Thumb
Расширенная модель Винера

Расширенная модель Винера. Применяется, когда все перечисленные выше величины зависят от частоты, однако постоянная составляющая и отношение разности постоянных составляющих при разных амплитудах входного воздействия к амплитуде второй гармоники, представляют собой тригонометрические функции от частоты.

Thumb
Обобщенная каскадная модель Винера-Гаммерштейна

Обобщенная каскадная модель Винера-Гаммерштейна. Применяется, когда постоянная составляющая и отношение разности постоянных составляющих при разных амплитудах входного воздействия к амплитуде второй гармоники, зависят от частоты, однако эти зависимости не являются тригонометрическими функциями от частоты.

Thumb
Расширенная каскадная модель Винера-Гаммерштейна

Расширенная каскадная модель Винера-Гаммерштейна. Применяется, когда постоянная составляющая представляет собой тригонометрическую функцию от частоты, однако отношение разности постоянных составляющих при разных амплитудах входного воздействия к амплитуде второй гармоники зависит от частоты, однако эта зависимость не является тригонометрической функцией от частоты.

Простая каскадная модель Гаммерштейна-Винера

Простая каскадная модель Гаммерштейна-Винера[5]. Применяется, когда выходной периодический сигнал содержит третью и четвертую гармонику.


Модель фильтра Заде. Применяется, когда постоянная составляющая выходного периодического сигнала не зависит от степени нелинейного преобразования.

Remove ads

Примечания

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads