Лучшие вопросы
Таймлайн
Чат
Перспективы
Вершинно k-связный граф
граф, который имеет больше чем k вершин и после удаления менее чем k любых вершин граф остаётся связным Из Википедии, свободной энциклопедии
Remove ads
В теории графов говорят, что нетривиальный граф G вершинно k-связен (или k-связен), если он имеет больше чем k вершин и после удаления менее чем k любых вершин граф остаётся связным.

Вершинная связность, или просто связность, графа — это наибольшее k, для которого граф k-вершинно-связен.
Альтернативно граф, отличный от полного, имеет связность k, если k является размером наименьшего подмножества вершин, при удалении которого граф становится несвязным[1]. Полные графы исключены из рассмотрения, поскольку их нельзя сделать несвязными путём удаления вершин. Полный граф с n вершинами имеет связность n − 1, как вытекает из первого определения.
Эквивалентное определение — если для любой пары вершин графа можно найти k непересекающихся путей, соединяющих эти вершины — см. теорему Менгера (Diestel 2005, С. 55). Это определение имеет тот же ответ: n − 1 для связности полного графа Kn[1].
1-связный граф называется также связным, 2-связный граф называется двусвязным, 3-связный граф называется, соответственно, трисвязным.
1-скелет[англ.] любого k-мерного выпуклого многогранника образует k-вершинно-связный граф (Теорема Балинского, Balinski, 1961). Частично обратная теорема Штейница утверждает, что любой 3-вершинно-связный планарный граф образует скелет выпуклого многогранника.
Remove ads
См. также
- Рёберно k-связный граф
- Связный граф
- Теорема Менгера
- Структурная связность[англ.]
- Вложение Татта
Примечания
Литература
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads