Лучшие вопросы
Таймлайн
Чат
Перспективы

Гамильтоново дополнение

Из Википедии, свободной энциклопедии

Remove ads

Задача гамильтонова дополнения — это задача нахождения минимального числа рёбер, которое нужно добавить в граф, чтобы он стал гамильтоновым.

Ясно, что задача в общем случае NP-трудна (поскольку её решение даёт ответ на NP-полную задачу определения, имеет ли граф гамильтонов цикл). Связанная задача разрешимости, может ли добавление K рёбер в заданный граф дать гамильтонов граф, является NP-полной.

Более того, Ву, Лу и Ли показали, что существование эффективных алгоритмов с постоянным коэффициентом аппроксимации для этой задачи маловероятно[1].

Задача может быть решена полиномиальное время для некоторых классов графов, куда входят параллельно-последовательные графы[2] и их обобщения[3], которые включают внешнепланарные графы. В эти классы входят также рёберные графы деревьев[4][5] и кактусы[6].

Гамарник и Свириденко использовали алгоритм линейного времени для решения задачи на деревьях для изучения асимптотического числа рёбер, которые нужно добавить к разреженным случайным графам, чтобы сделать их гамильтоновыми[7].

Remove ads

Примечания

Литература

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads