Лучшие вопросы
Таймлайн
Чат
Перспективы
Гиперсфера
гиперповерхность в n-мерном евклидовом пространстве Из Википедии, свободной энциклопедии
Remove ads
Гиперсфе́ра (от др.-греч. ὑπερ- «сверх-» + σφαῖρα «шар») — гиперповерхность в -мерном евклидовом пространстве, образованная точками, равноудалёнными от заданной точки, называемой центром сферы.
- при гиперсфера вырождается в две точки, равноудалённые от центра;
- при она представляет собой окружность;
- при гиперсфера является сферой.
- при гиперсфера является 3-сферой.
- при гиперсфера является 4-сферой.
В исходном пространстве эти линии являются окружностями и образуют прямоугольную сетку на 3-сфере. Стереографическая проекция — конформное отображение, поэтому их образы также являются окружностями или прямыми и ортогональны друг другу.


…
- при гиперсфера является 7-сферой. 7-сфера примечательна тем, что эта размерность первая, в которой существуют экзотические сферы, то есть многообразия, гомеоморфные стандартной 7-сфере, но не диффеоморфные[2].
Расстояние от центра гиперсферы до её поверхности называется радиусом гиперсферы. Гиперсфера является -мерным подмногообразием в -мерном пространстве, все нормали к которому пересекаются в её центре.
Remove ads
Уравнения
Гиперсфера радиуса с центром в точке задаётся как геометрическое место точек, удовлетворяющих условию:
Remove ads
Гиперсферические координаты
Суммиров вкратце
Перспектива
Как известно, полярные координаты описываются следующим образом:
а сферические координаты так:
n-мерный шар можно параметризовать следующим набором гиперсферических координат:
где и .
Якобиан этого преобразования равен
В другом варианте,
где и .
Якобиан в такой форме равен
Remove ads
Площадь и объём
Суммиров вкратце
Перспектива


В -мерном евклидовом пространстве для гиперсферы размерности её площадь поверхности и объём , ограниченный ею (объём n-мерного шара), можно рассчитать по формулам[3][4]:
где
а — гамма-функция. Этому выражению можно придать другой вид:
Здесь — двойной факториал.
Так как
то объёмы шаров удовлетворяют рекуррентному соотношению
а площади их поверхностей соотносятся как
Следующая таблица показывает, что единичные сфера и шар принимают экстремальный объём для и , соответственно.
В строке «размерность» таблицы содержится размерность поверхности геометрической фигуры, а не размерность пространства, в котором она находится. Для -мерного шара размерность его «объёма» также равна , а размерность его «площади» — .
Отношение объёма -мерного шара к объёму описанного вокруг него -куба быстро уменьшается с ростом , быстрее, чем .
Remove ads
Топология гиперсферы
В этом разделе под сферой будем понимать n-мерную гиперсферу, под шаром — n-мерный гипершар, то есть , .
- Сфера гомеоморфна факторизации шара по его границе.
- Шар гомеоморфен факторизации .
- Сфера является клеточным пространством. Простейшее клеточное разбиение состоит из двух клеток, гомеоморфных и . Оно получается напрямую из построения сферы как факторпространства замкнутого шара. Клеточное разбиение также можно построить по индукции, разбивая вдоль экватора на две n-мерные клетки, гомеоморфные , и сферу , являющуюся их общей границей.
Remove ads
Примечания
См. также
Ссылки
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads