Лучшие вопросы
Таймлайн
Чат
Перспективы

Двустороннее преобразование Лапласа

Из Википедии, свободной энциклопедии

Remove ads

Двустороннее преобразование Лапласа — интегральное преобразование, тесно связанное с преобразованием Фурье, преобразованием Меллина, а также с обычным и односторонним преобразованием Лапласа.

Определение

Суммиров вкратце
Перспектива

Если является вещественной или комплексной функцией действительной переменной , то двустороннее преобразование Лапласа задаётся формулой

Интеграл в этом определении подразумевается несобственным и сходящимся тогда, когда существуют

Иногда двусторонние преобразования записывают в виде

Вообще, переменная может быть как вещественной, так и комплексной величиной.

Remove ads

Связь с другими интегральными преобразованиями

И обратно: из двустороннего преобразования можно получить обычное по формуле
И обратно: из двустороннего преобразования можно получить преобразование Меллина по формуле
  • Преобразование Фурье может быть определено через двустороннее преобразование Лапласа формулой
Remove ads

Свойства

Подробнее , ...

Литература

  • LePage, Wilbur R., Complex Variables and the Laplace Transform for Engineers, Dover Publications, 1980
  • van der Pol, Balthasar, and Bremmer, H., Operational Calculus Based on the Two-Sided Laplace Integral, Chelsea Pub. Co., 3rd edition, 1987

Примечания

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads