Лучшие вопросы
Таймлайн
Чат
Перспективы

Дерево Фибоначчи

Из Википедии, свободной энциклопедии

Remove ads

Дерево ФибоначчиАВЛ-дерево с наименьшим числом вершин при заданной высоте (глубине).

  1. Если для какой-либо из вершин высота поддерева, для которого эта вершина является корнем, равна , то правое и левое поддерево этой вершины имеют высоты равные соответственно и , или и . Каждое поддерево дерева Фибоначчи также является деревом Фибоначчи.
  2. Пустое дерево — дерево Фибоначчи высоты 0.
  3. Дерево с одной вершиной — дерево Фибоначчи высоты 1.
Remove ads

Число вершин

Одно из весьма существенных свойств дерева Фибоначчи — количество вершин в нём может принимать только некоторый набор значений. Пусть — число вершин в дереве Фибоначчи с высотой , тогда , , а для произвольного h число вершин можно описать рекуррентно: . Дерево Фибоначчи названо так из-за схожести приведённой формулы с рекуррентным соотношением, определяющим последовательность чисел Фибоначчи. Для высоты число вершин , где -ое число Фибоначчи.

Remove ads

См. также

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads