Лучшие вопросы
Таймлайн
Чат
Перспективы

Дискретное преобразование Хартли

Из Википедии, свободной энциклопедии

Remove ads

Дискретное преобразование Хартли (сокращённо ДПХ) — разновидность дискретного ортогонального тригонометрического преобразования. Во многих случаях может служить заменой дискретного преобразования Фурье.

Определение

Суммиров вкратце
Перспектива

Последовательность действительных чисел , , … , преобразуется в последовательность действительных чисел , , … , с помощью дискретного преобразования Хартли по формуле:

где [1]. Обратное дискретное преобразование Хартли задаётся формулой:

Следует отметить, что в отличие от дискретного преобразования Фурье (сокращённо ДПФ), преобразование Хартли даёт ряд действительных чисел.

Имеют место следующие формулы перехода от ДПФ (последовательность , , … , ) к ДПХ и наоборот[2]:

Remove ads

Быстрое преобразование Хартли

Суммиров вкратце
Перспектива

Идея быстрого преобразования Хартли (сокращённо БПХ) такая же, как и у быстрого преобразования Фурье (сокращённо БПФ): за счет симметрии можно сократить количество вычислений.

Пусть из исходной последовательности , , … , получены две новые последовательности длины , равные и и пусть их ДПХ равны соответственно и , где . В этих обозначениях общая формула БПХ имеет следующий вид[3]:

С помощью указанных выше формул перехода от ДПХ к ДПФ можно использовать БПХ для вычисления БПФ, что упрощает вычисления ввиду отсутствия комплексных умножений[4].

Remove ads

Примечания

Литература

См. также

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads