Лучшие вопросы
Таймлайн
Чат
Перспективы

Дисперсия света

физическое явление разложения света на спектр при его преломлении Из Википедии, свободной энциклопедии

Дисперсия света
Remove ads

Диспе́рсия све́та (разложение света; светорассеяние[1]) — это совокупность явлений, обусловленных зависимостью абсолютного показателя преломления вещества от частоты (или длины волны) света (частотная дисперсия), или, что то же самое, зависимостью фазовой скорости света в веществе от частоты (или длины волны). Экспериментально открыта Исааком Ньютоном около 1672 года, хотя теоретически достаточно хорошо объяснена значительно позднее[2].

Thumb
Разложение света в спектр вследствие дисперсии при прохождении через призму (опыт Ньютона)

Пространственной дисперсией называется зависимость тензора диэлектрической проницаемости среды от волнового вектора. Такая зависимость вызывает ряд явлений, называемых эффектами пространственной поляризации.

Remove ads

Свойства и проявления

Суммиров вкратце
Перспектива

Один из самых наглядных примеров дисперсии — разложение белого света при прохождении его через призму (опыт Ньютона). Сущностью явления дисперсии является различие фазовых скоростей распространения лучей света c различной длиной волны в прозрачном веществе — оптической среде (тогда как в вакууме скорость света всегда одинакова, независимо от длины волны и, следовательно, цвета). Обычно, чем меньше длина световой волны, тем больше показатель преломления среды для неё и тем меньше фазовая скорость волны в среде:

  • у света красного цвета фазовая скорость распространения в среде максимальна, а степень преломления — минимальна,
  • у света фиолетового цвета фазовая скорость распространения в среде минимальна, а степень преломления — максимальна.

Однако в некоторых веществах (например, в парах иода) наблюдается эффект аномальной дисперсии, при котором синие лучи преломляются меньше, чем красные, а другие лучи поглощаются веществом и от наблюдения ускользают. Говоря строже, аномальная дисперсия широко распространена, например, она наблюдается практически у всех газов на частотах вблизи линий поглощения, однако у паров иода она достаточно удобна для наблюдения в оптическом диапазоне, где они очень сильно поглощают свет.

Дисперсия света позволила впервые вполне убедительно показать составную природу белого света.

Белый свет разлагается в спектр в результате прохождения через дифракционную решётку или отражения от неё (это не связано с явлением дисперсии, а объясняется природой дифракции). Дифракционный и призматический спектры несколько отличаются: призматический спектр сжат в красной части и растянут в фиолетовой и располагается в порядке убывания длины волны: от красного к фиолетовому; нормальный (дифракционный) спектр — равномерный во всех областях и располагается в порядке возрастания длин волн: от фиолетового к красному.

По аналогии с дисперсией света, также дисперсией называются и сходные явления зависимости распространения волн любой другой природы от длины волны (или частоты). По этой причине, например, термин закон дисперсии, применяемый как название количественного соотношения, связывающего частоту и волновое число, применяется не только к электромагнитной волне, но к любому волновому процессу.

Дисперсией объясняется факт появления радуги после дождя (точнее тот факт, что радуга разноцветная, а не белая).

Дисперсия является причиной хроматических аберраций — одних из аберраций оптических систем, в том числе фотографических и видеообъективов.

Огюстен Коши предложил эмпирическую формулу для аппроксимации зависимости показателя преломления среды от длины волны:

,

где  — длина волны в вакууме; a, b, c — постоянные, значения которых для каждого материала должны быть определены в опыте. В большинстве случаев можно ограничиться двумя первыми членами формулы Коши. Впоследствии были предложены другие более точные, но и одновременно более сложные, формулы аппроксимации.

Remove ads

Дисперсия света в природе и искусстве

Thumb
Благодаря дисперсии можно наблюдать разные цвета
  • Радуга, чьи цвета обусловлены дисперсией, — один из ключевых образов культуры и искусства.
  • Благодаря дисперсии света можно наблюдать цветную «игру света» на гранях бриллианта и других прозрачных гранёных предметах или материалах.
  • В той или иной степени радужные эффекты обнаруживаются достаточно часто при прохождении света через почти любые прозрачные предметы. В искусстве они могут специально усиливаться и/или подчёркиваться.
  • Разложение света в спектр (вследствие дисперсии) при преломлении в призме — довольно распространённая тема в изобразительном искусстве. Например, на обложке альбома The Dark Side of the Moon группы Pink Floyd изображено преломление света в призме с разложением в спектр.


Remove ads

Обобщенная формулировка высоких порядков дисперсии - оптика Лаха-Лагерра

Суммиров вкратце
Перспектива

Описание хроматической дисперсии с помощью пертурбативного подхода через коэффициенты Тейлора подходит для задач оптимизации, где необходимо сбалансировать дисперсию от нескольких различных систем. Например, в лазерных усилителях, импульсы сначала растягиваются во времени, чтобы избежать оптического повреждения кристаллов. Затем, в процессе усиления энергии, импульсы накапливают неизбежную линейную и нелинейную фазу, проходя через различные материалы. Наконец, импульсы сжимаются в различных типах компрессоров. Для того чтобы сбросить любые остаточные высшие порядки в накопленной фазе, отдельные порядки дисперсии обычно измеряются и балансируются. Для однородных систем такое пертурбативное описание часто не требуется (например, для распространения импульса в волноводах или оптических волокнах). Дисперсионные порядки сводятся к аналитическим уравнениям, которые идентичны преобразованиям типа Лаха-Лагера[3][4].

Порядки дисперсии определяются разложением Тейлора фазы или волнового вектора.

Производные дисперсии для волнового вектора и фазы могут быть выражены как:

,

Производные любой дифференцируемой функции в пространстве длин волн или частот определяются через преобразование Лаха как:

Матричные элементы преобразования являются коэффициентами Лаха:

Записанное для дисперсии групповой скорости GDD, приведенное выше выражение утверждает, что постоянная длины волны GGD будет иметь нулевые высшие порядки. Высшие порядки, полученные из GDD, являются:

Подстановка уравнения (2), выраженного для показателя преломления или оптического пути , в уравнение (1) приводит к аналитическим выражениям для порядков дисперсии. В общем случае дисперсия порядка POD является преобразованием типа Лагерра отрицательного второго порядка:

Матричные элементы преобразований представляют собой беззнаковые коэффициенты Лагерра порядка минус 2 и имеют вид:

Первые десять порядков дисперсии, записанные в явном виде для волнового вектора:

Групповой показатель преломления определяется как: .

В явном виде, записанные для фазы , первые десять порядков дисперсии могут быть выражены как функция длины волны с помощью преобразований Лаха (уравнение (2)) в виде:


Remove ads

См. также

Примечания

Литература

Ссылки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads