Лучшие вопросы
Таймлайн
Чат
Перспективы
Доказательные вычисления
целенаправленные вычисления на ЭВМ, которые приводят к строгому установлению новых фактов и доказательству теорем Из Википедии, свободной энциклопедии
Remove ads
Доказательные вычисления — целенаправленные вычисления на ЭВМ, комбинируемые с аналитическими исследованиями, которые приводят к строгому установлению новых фактов и доказательству теорем[1].
Достоверные вычисления
Одним из часто применяемых методов доказательных вычислений являются достоверные вычисления. Под достоверными вычислениями понимаются численные методы с автоматической верификацией точности получаемых результатов[2]. Довольно часто доказательные вычисления строятся на основе интервального анализа, где вместо вещественных чисел рассматриваются интервалы, которые определяют точность величин. Интервальный анализ широко применяется для вычислений с гарантируемой точностью в условиях машинной арифметики.
Remove ads
Примеры
Суммиров вкратце
Перспектива
В теории чисел
Благодаря тому, что теория чисел во многом оперирует целыми числами, использование доказательных вычислений в теории чисел оказывается очень плодотворным.
- Утверждается, что число Мерсенна является простым. Проверить этот факт теоретически возможно человеку, но практически только с использованием вычислительной техники.
- Л. Эйлер выдвинул гипотезу, что уравнение не имеет решений в целых положительных числах. Однако позднее было показано, что существует как минимум одно решение:
- , , , , .
Причем это решение было найдено с помощью перебора на компьютере[1].
В теории графов
Одно из наиболее известных успехов применения доказательных вычислений в теории графов является решение проблемы четырёх красок. Эта знаменитая задача была поставлена 1852 году и формулируется следующим образом: «выяснить, можно ли всякую расположенную на сфере карту раскрасить четырьмя красками так, чтобы любые две области, имеющие общий участок границы, были раскрашены в разные цвета». В 1976 году К. Аппель и В. Хакен с помощью доказательных вычислений показали, что так можно раскрасить любую карту.
В гидродинамике
Применением доказательных вычислений в математических задачах гидродинамики систематически занимались в Институте прикладной математики им. М. В. Келдыша РАН под руководством К. И. Бабенко. Примером является следующая теорема, полученная с помощью доказательных вычислений[3].
Теорема. При и спектральная задача Орра — Зоммерфельда имеет собственное значение, лежащее в полуплоскости . Следовательно, в линеаризованной постановке при этих параметрах течение Пуазёйля неустойчиво.
Ещё примеры
- Задача Буля о пифагоровых тройках.
- Классификация многогранников Джонсона.
Remove ads
См. также
Примечания
Ссылки
Литература
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads