Лучшие вопросы
Таймлайн
Чат
Перспективы
Разрезающее циклы множество вершин
Из Википедии, свободной энциклопедии
Remove ads
В теории графов разрезающее циклы множество вершин графа — это множество вершин, удаление которых приводит к разрыву циклов. Другими словами, разрезающее циклы множество вершин содержит по меньшей мере по одной вершине из любого цикла графа. Задача о разрезающем циклы множестве вершин является в теории вычислительной сложности NP-полной задачей. Задача входит в список 21 NP-полных задач Карпа. Задача имеет широкое применение в операционных системах, базах данных и разработке СБИС.
Remove ads
Определение
Суммиров вкратце
Перспектива
Задача о разрезающем циклы множестве вершин — это следующая задача разрешимости:
- Дано: (Неориентированный или ориентированный) граф и положительное число .
- Вопрос: Существует ли подмножество , для которого , такой, что с удалёнными вершинами, принадлежащими , не содержит циклов?
Граф , оставшийся после удаления из графа вершин, принадлежащих множеству , является порождённым лесом (для неориентированных графов, или порождённым направленным ациклическим графом для ориентированных графов). Таким образом, поиск минимального разрезающего циклы множества вершин в графе эквивалентен поиску максимального порождённого леса (соответственно, максимального порождённого ациклического графа в случае ориентированных графов).
Remove ads
NP-трудность
Карп[1] показал, что задача о разрезающем циклы множестве вершин для ориентированных графов является NP-полной. Задача остаётся NP-полной для направленных графов с максимальной степенью входящих и исходящих дуг, равной двум, и для ориентированных пленарных графов с максимальной степенью входящих и исходящих дуг, равной трём[2]. Из приведения Карпа также следует NP-полнота задачи о разрезающем циклы множестве вершин на неориентированных графах, и задача остаётся NP-трудной на графах с максимальной степенью четыре. Задача о разрезающем циклы множестве вершин может быть решена за полиномиального времени на графах с максимальной степенью, не превосходящей трёх[3][4].
Заметим, что задача удаления как можно меньшего числа рёбер для разрыва циклов (в неориентированном графе) эквивалентна нахождению остовного дерева, и эта задача может быть выполнена за полиномиальное время. В противоположность этому задача удаления рёбер из ориентированного графа с целью сделать его ациклическим, то есть задача о разрезающем циклы наборе дуг, является NP-полной[1].
Remove ads
Точные алгоритмы
Соответствующая NP-полная оптимизационная задача нахождения размера минимального разрезающего циклы множества вершин может быть решена за время O(1,7347n), где n — число вершин в графе [5]. Фактически этот алгоритм находит максимальный порождённый лес и дополнение этого леса будет искомым набором вершин. Число минимальных разрезающих циклы множеств вершин ограничено O(1,8638n)[6]. Задача о минимальном разрезающем циклы множестве для ориентированного графа может быть решена за время O*(1,9977n), где n — число вершин в данном ориентированном графе[7]. Параметризованные версии ориентированной и неориентированной задач фиксированно-параметрически разрешимы[англ.][8].
Приближение
Задача является APX-полной, что прямо следует из APX-сложности задачи о вершинном покрытии[9] и существования аппроксимации, сохраняющей L-приведение из задачи о вершинном покрытии к этой задаче[1]. Лучший известный алгоритм для неориентированных графов имеет коэффициент два[10].
Границы
Согласно теореме Эрдёша — Поза размер минимального разрезающего циклы множества вершин ограничен логарифмическим множителем от максимального числа вершинно-непересекающихся циклов в заданном графе[11].
Приложения
В операционных системах разрезающее циклы множество вершин играет заметную роль в обнаружении взаимных блокировок (deadlock). В графе ожидания операционной системы каждый ориентированный цикл соответствует взаимной блокировке. Чтобы выйти из всех взаимных блокировок, некоторые блокированные процессы должны быть прерваны. Минимальное разрезающее циклы множество вершин в графе соответствует минимальному числу процессов, которые следует прервать[12]
Кроме того, разрезающее циклы множество вершин имеет приложение в разработке СБИС[13].
Remove ads
Примечания
Литература
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads