Лучшие вопросы
Таймлайн
Чат
Перспективы
Изолированная точка множества
Из Википедии, свободной энциклопедии
Remove ads
Изоли́рованная то́чка в общей топологии — это такая точка множества, что пересечение некоторой её окрестности с множеством состоит только из этой точки.
Определение
Пусть дано топологическое пространство , и подмножество . Точка называется изолированной точкой множества , если существует окрестность такая, что
Remove ads
Связанные определения
- Пространство, каждая точка которого является изолированной, является дискретным
Свойства
- Произвольная функция , где — множество с собственной топологией, всегда непрерывна в изолированной точке .
Примеры
Пусть — множество вещественных чисел с стандартной топологией.
- Если , то точка является изолированной, а все остальные нет.
- Если то не является изолированной точкой, а все остальные ими являются.
- Множество натуральных чисел дискретно.
- Множество рациональных чисел не имеет изолированных точек. В частности, оно не является дискретным, хотя и является счётным.
- Существуют неприводимые многочлены от двух переменных f(x,y), графики которых (т.е. множество точек плоскости, в которых f(x,y)=0) содержат одну или несколько изолированных точек. Например, график функции y^2 = x^2*(x-1) состоит из кривой, лежащей в полуплоскости x>1, и изолированной точки (0;0).
Remove ads
См. также
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads