Лучшие вопросы
Таймлайн
Чат
Перспективы
Инвариантная масса
Из Википедии, свободной энциклопедии
Remove ads
Инвариантная масса, неизменная масса[1] — это скалярная физическая величина, имеющая размерность массы, вычисляемая как функция энергии и импульса всех составных частей замкнутой физической системы и инвариантная относительно преобразований Лоренца.[2]
У физических систем с времениподобным четырёхимпульсом инвариантная масса положительна, у физических систем с нулевым четырехимпульсом (безмассовых физических систем, например, один фотон или множество фотонов, движущихся в одном и том же направлении) инвариантная масса равна нулю.
Если объекты внутри системы находятся в относительном движении, то инвариантная масса всей системы будет отличаться от суммы масс образующих её объектов.[2]
Для изолированной "массивной" системы центр масс системы движется по прямой с постоянной субсветовой скоростью. В системе отсчёта, относительно которой скорость центра масс равна нулю, общий импульс системы равен нулю, и систему в целом можно рассматривать как "находящуюся в состоянии покоя". В этой системе отсчёта инвариантная масса системы равна общей энергии системы, делённой на квадрат скорости света {{"c"2}}. Эта общая энергия является "минимальной" энергией, которую можно наблюдать у системы, когда её видят различные наблюдатели из разных инерциальных систем отсчёта.
Система отсчёта, относительно которой скорость центра масс равна нулю, не существует для группы фотонов, движущихся в одном направлении. Однако, когда два или более фотона движутся в разных направлениях, существует система координат центра масс. Таким образом, инвариантная масса системы из нескольких фотонов, движущихся в разных направлениях, положительна, несмотря на то, что она равна нулю для каждого фотона.

Remove ads
Сумма масс
Суммиров вкратце
Перспектива
Инвариантная масса системы включает массу любой кинетической энергии составляющих системы, которая остаётся в центре системы отсчёта импульса, поэтому инвариантная масса системы может быть больше суммы инвариантных масс её отдельных составляющих. Например, масса и инвариантная масса равны нулю для отдельных фотонов, даже если они могут добавлять массу к инвариантной массе систем. По этой причине инвариантная масса, как правило, не является аддитивной величиной (хотя есть несколько редких ситуаций, когда это может быть, как в случае, когда массивные частицы в системе без потенциальной или кинетической энергии могут быть добавлены к общей массе).
Рассмотрим простой случай системы из двух тел, где объект A движется к другому объекту B, который изначально находится в состоянии покоя (в любой конкретной системе отсчёта). Величина инвариантной массы этой системы из двух тел (см. определение ниже) отличается от суммы масс покоя (т.е. их соответствующей массы в неподвижном состоянии). Даже если мы рассмотрим ту же систему с точки зрения центра импульса, где чистый импульс равен нулю, величина инвариантной массы системы не равна сумме масс покоя частиц внутри нее.
Кинетическая энергия частиц системы и потенциальная энергия силовых полей (возможно, отрицательная[англ.]) вносят вклад в инвариантную массу системы. Сумма кинетических энергий частиц, является наименьшей в системе координат центра импульса.
Для изолированной "массивной" системы центр масс движется по прямой с постоянной субсветовой скоростью. Таким образом, всегда можно разместить наблюдателя, который будет двигаться вместе с ним. В этой системе отсчёта, которая является системой центра масс, общий импульс равен нулю, и систему в целом можно рассматривать как "находящуюся в состоянии покоя", если это связанная система ннапример, бутылка с газом). В этой системе отсчёта, которая существует всегда, инвариантная масса системы равна общей энергии системы (в системе отсчёта с нулевым импульсом), делённой на "c"2.
Remove ads
Определение в физике элементарных частиц
Суммиров вкратце
Перспектива
В физике элементарных частиц инвариантная масса m0 системы элементарных частиц может быть рассчитана по энергиям частиц и их импульсам , , измеренными в произвольной системе отсчёта, с помощью соотношения энергии и импульса[англ.][3][4]:
или в релятивистской системе единиц где ,
Инвариантная масса одинакова во всех системах отсчёта (см. также специальная теория относительности). С математической точки зрения она представляет собой псевдоевклидову длину четырёхвектора (E, p), рассчитанную с использованием релятивистской версии теоремы Пифагора[4], которая использует разные знаки для пространственных и временных измерений. Эта длина сохраняется при любом смещении или вращении Лоренца в четырёх измерениях, точно так же, как обычная длина вектора, сохраняется при вращениях.
Поскольку инвариантная масса определяется из величин, которые сохраняются во время распада, инвариантная масса, рассчитанная с использованием энергии и импульса продуктов распада одной частицы, равна массе распавшейся частицы.[4]
В экспериментах по неупругому рассеянию инвариантная масса [4] необнаруженной частицы, уносящей с собой часть энергии и импульса, называется недостающей массой . Она определяется (в релятивистской системе единиц)[4]:
Если есть одна доминирующая частица, которая не была обнаружена во время эксперимента, её массу можно определить по пику на графике её инвариантной массы.[3][4]
В тех случаях, когда импульс вдоль одного направления не может быть измерен (т.е. в случае нейтрино, о присутствии которого можно судить только по недостающей энергии[англ.]), используется поперечная масса[англ.].
Remove ads
Примеры
Суммиров вкратце
Перспектива
Столкновение двух частиц
При столкновении двух частиц (или распаде двух частиц) квадрат инвариантной массы (в в релятивистской системе единиц) равен[3]
Безмассовые частицы
Инвариантная масса системы, состоящей из двух безмассовых частиц, импульсы которых образуют угол имеет удобное выражение:
Эксперименты на коллайдере
В экспериментах на коллайдере частиц часто определяют угловое положение частицы в терминах азимутального угла и псевдобыстроты . Кроме того, обычно измеряется поперечный импульс, . В этом случае, если частицы безмассовые или сильно релятивистские (), то инвариантная масса определяется как:
Remove ads
См. также
- Масса в специальной теории относительности
- Инвариант (физика)
- Поперечная масса[англ.]
Примечания
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads