Лучшие вопросы
Таймлайн
Чат
Перспективы
Интегралы Френеля
Из Википедии, свободной энциклопедии
Remove ads
Интегралы Френеля S(x) и C(x) — это специальные функции, названные в честь Огюстена Жана Френеля и используемые в оптике. Они возникают при расчёте дифракции Френеля и определяются как

Параметрический график S(x) и C(x) даёт кривую на плоскости, называемую спиралью Корню или клотоидой.
Remove ads
Разложение в ряд
Суммиров вкратце
Перспектива

Интегралы Френеля могут быть представлены степенными рядами, сходящимися при всех x:
Некоторые авторы[1] используют в качестве аргумента тригонометрических подынтегральных функций . Таким образом определённые интегралы Френеля получаются из определённых выше интегралов заменой переменной и умножением интегралов на .
Remove ads
Спираль Корню
Суммиров вкратце
Перспектива

Спираль Корню, также известная как клотоида, — это кривая, являющаяся параметрическим графиком S(t) от C(t). Спираль Корню была придумана Мари Альфредом Корню для облегчения расчёта дифракции в прикладных задачах.
Так как
то в такой параметризации касательный вектор имеет единичную длину, так что t является длиной кривой, измеряемой от точки (0,0). Следовательно, обе ветви спирали имеют бесконечную длину.
Кривизна этой кривой в любой точке пропорциональна длине дуги, заключённой между этой точкой и началом координат. Благодаря этому свойству она применяется в строительстве дорог, так как угловое ускорение машины, движущейся по этой кривой с постоянной скоростью, будет оставаться постоянным.
Remove ads
Свойства
Суммиров вкратце
Перспектива
- и — нечётные функции .
- Асимптотики интегралов Френеля при даются формулами
- Используя разложение в ряд, можно построить аналитическое продолжение интегралов Френеля на всю комплексную плоскость. Комплексные интегралы Френеля выражаются через функцию ошибок как
- .
- Интегралы Френеля не выражаются через элементарные функции, кроме частных случаев. Предел этих функций при равен
Вычисление

Пределы функций C и S при могут быть найдены с помощью контурного интегрирования. Для этого берётся контурный интеграл функции
по границе сектора на комплексной плоскости, образованного осью абсцисс, лучом , и окружностью радиуса R с центром в начале координат.
При интеграл по дуге стремится к 0, интеграл по вещественной оси стремится к значению интеграла Пуассона
и, после некоторых преобразований, интеграл вдоль оставшегося луча может быть выражен через предельное значение интеграла Френеля.
Remove ads
См. также
Примечания
Ссылки
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads