Лучшие вопросы
Таймлайн
Чат
Перспективы

Интерполирование с кратными узлами

Из Википедии, свободной энциклопедии

Remove ads

Интерполирование с кратными узлами — задача о построении многочлена минимальной степени, принимающего в некоторых точках (узлах интерполяции) заданные значения, а также заданные значения производных до некоторого порядка.

Показывается, что существует единственный многочлен степени , удовлетворяющий условиям:

, где .

Этот многочлен называют многочленом с кратными узлами, или многочленом Эрмита. В общем виде:

,  — количество узлов и  — кратность узла .

Шарль Эрмит показал, что

, где  — коэффициенты ряда Тейлора для функции .
Remove ads

Доказательство

Частные случаи

  • Если все равны единице, то интерполяционный многочлен Эрмита совпадает с интерполяционным многочленом Лагранжа.
  • Если количество узлов интерполяции равно единице, то интерполяционный многочлен Эрмита совпадает с многочленом Тейлора.
  • Если количество узлов интерполяции равно двум и в каждом задано значение функции и значение её производной — имеем задачу о построении кубического сплайна.
Remove ads

Оценка остатка интерполяции

См. также

Литература

  • Бахвалов Н. С., Численные методы, М., 1973.
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads