Лучшие вопросы
Таймлайн
Чат
Перспективы

Квазимногообразие

Из Википедии, свободной энциклопедии

Remove ads

Квазимногообра́зие (от лат. quas(i) «наподобие», «нечто вроде») в универсальной алгебре — класс алгебраических систем фиксированной сигнатуры, аксиоматизируемый набором квазитождеств (хорновскими дизъюнктами).

В отличие от многообразий — классов алгебраических систем, аксиоматизируемых тождествами — особую роль в теории квазимногообразий играют теоретико-модельные методы, тогда как многообразия в основном рассматриваются для алгебр (алгебраических систем без отношений в сигнатуре) и изучаются общеалгебраическими методами[1].

Remove ads

Определения

Суммиров вкратце
Перспектива

Для алгебраической системы с набором операций и отношений квазиатомарными считаются формулы вида:

  1. (или в нотации отношений: ),
  2. ,

где , , а  — символы переменных. (Иногда равенство включают в сигнатуру алгебраической системы как отношение и в этом случае достаточно формул первого вида.)

Квазитождества — формулы вида:

где  — квазиатомарные формулы с переменными . Квазимногообразие — класс алгебраических систем, задаваемый набором квазитождеств.

Remove ads

Характеристические свойства

Суммиров вкратце
Перспектива

Всякое многообразие алгебраических систем является квазимногообразием вследствие того, что всякое тождество (из квазиатомарной формулы) можно заменить, например, равносильным ему квазитождеством [2].

Если квазимногообразие конечно аксиоматизируемо, то оно конечно определимо[3].

Единичная алгебраическая система для заданной сигнатуры , то есть система с носителем из одного элемента , при которой и , является квазимногообразием (и, более того, многообразием). Наименьшее квазимногообразие заданной сигнатуры является многообразием, задаётся тождествами и и состоит из единственной единичной системы. Наибольшее квазимногообразие заднной сигнатуры также является многообразием — классом всех систем заданной сигнатуры, задаваемым тождеством .[4]

Всякое квазимногообразие включает произвольное фильтрованное произведение входящих в него систем[5].

Чтобы класс систем являлся квазимногообразием необходимо и достаточно, чтобы он был одновременно локально замкнут, мультипликативно замкнут (содержал любое декартово произведение своих систем) и содержал единичную систему. Локальная и мультипликативная замкнутость для этого признака могут быть эквивалентно заменены на замкнутость относительно фильтрованных произведений и наследственность[уточнить][6].

Remove ads

Определяющие соотношения

Свободные композиции

Решётки квазимногообразий

История

Суммиров вкратце
Перспектива

Первым результатом применения квазитождеств в общей алгебре считается результат Анатолия Мальцева 1939 года[7], в котором построена бесконечная серия квазитождеств, характеризующая класс вложимых в группы полугрупп. В работе 1943 года Чена Маккинси[англ.][8] связал с квазитождествами некоторые алгоритмические проблемы алгебры, а одним из результатов решения Робертом Дилуорсом[англ.] в 1945 году[9] задачи о существовании недистрибутивных решёток с единственным дополнением, стало доказательство факта, что квазимногообразия имеют свободные системы.

Теорема Новикова (1955) о неразрешимости проблемы равенства слов в группах фактически означает неразрешимость хорновой теории групп, то есть также может быть отнесена к результатам, относящимся к квазимногообразниям.

Становление теории квазимногообразий как самостоятельной ветви универсальной алгебры относится к работам Мальцева, Табаты и Фудзивары конца 1950-х — начала 1960-х годов. Доклад Мальцева на Международном конгрессе математиков 1966 года в Москве, в котором были сформулированы некоторые важные проблемы, относящиеся к квазимногообразиям, способствовал росту интереса математиков к этой ветви[10].

Особый всплеск интереса к теории квазимногообразий проявился в 1970-е годы, когда началось широкое применение хорновой логики в логическом программировании (прежде всего, в работах, связанных с языком программирования Пролог) и в теории баз данных.

Remove ads

Примечания

Литература

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads